AD21365WYSWZ204A [ADI]

16-BIT, 16.67MHz, MIXED DSP, PQFP144, ROHS COMPLIANT, MS-026BFBHD, LQFP-144;
AD21365WYSWZ204A
型号: AD21365WYSWZ204A
厂家: ADI    ADI
描述:

16-BIT, 16.67MHz, MIXED DSP, PQFP144, ROHS COMPLIANT, MS-026BFBHD, LQFP-144

时钟 外围集成电路
文件: 总56页 (文件大小:2126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC Processors  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SUMMARY  
DEDICATED AUDIO COMPONENTS  
High performance 32-bit/40-bit floating point processor  
optimized for high performance audio processing  
Single-instruction, multiple-data (SIMD) computational  
architecture  
S/PDIF-compatible digital audio receiver/transmitter  
8 channels of asynchronous sample rate converters (SRC)  
16 PWM outputs configured as four groups of four outputs  
ROM-based security features include:  
JTAG access to memory permitted with a 64-bit key  
Protected memory regions that can be assigned to limit  
access under program control to sensitive code  
PLL has a wide variety of software and hardware multi-  
plier/divider ratios  
On-chip memory—3M bits of on-chip SRAM  
Code compatible with all other members of the SHARC family  
The ADSP-2136x processors are available with a 333 MHz  
core instruction rate with unique audiocentric peripherals  
such as the digital applications interface, S/PDIF trans-  
ceiver, DTCP (digital transmission content protection  
protocol), serial ports, precision clock generators, and  
more. For complete ordering information, see Ordering  
Guide on Page 53.  
Available in 136-ball BGA and 144-lead LQFP_EP packages  
Internal Memory  
SIMD Core  
Block 0  
RAM/ROM  
Block 1  
RAM/ROM  
Block 2  
RAM  
Block 3  
RAM  
Instruction  
Cache  
5 stage  
Sequencer  
B2D  
64-BIT  
B0D  
64-BIT  
B3D  
64-BIT  
B1D  
64-BIT  
S
DAG1/2  
PEx  
Timer  
PEy  
DMD 64-BIT  
PMD 64-BIT  
DMD 64-BIT  
PMD 64-BIT  
Core Bus  
Cross Bar  
Internal Memory I/F  
FLAGx/IRQx/  
TMREXP  
JTAG  
PERIPHERAL BUS  
32-BIT  
IOD 32-BIT  
MTM/  
DTCP  
IOD BUS  
PERIPHERAL BUS  
CORE TIMER ASRC S/PDIF PCG  
FLAGS Tx/Rx  
Core  
Flags  
PDAP/ SPORT  
IDP7-0  
PWM  
3-0  
SPI B  
PP  
SPI  
2
-
0
3-0  
A-B  
5
-
0
DAI Routing/Pins  
PP Pin MUX  
DAI Peripherals  
Peripherals  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2010 All rights reserved.  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
TABLE OF CONTENTS  
Summary ............................................................... 1  
Revision History ...................................................... 3  
General Description ................................................. 4  
SHARC Family Core Architecture ............................ 5  
Family Peripheral Architecture ................................ 7  
I/O Processor Features ........................................... 9  
System Design ...................................................... 9  
Development Tools ............................................. 10  
Additional Information ........................................ 12  
Pin Function Descriptions ....................................... 13  
Specifications ........................................................ 16  
Operating Conditions .......................................... 16  
Electrical Characteristics ....................................... 16  
Package Information ........................................... 17  
ESD Caution ...................................................... 17  
Maximum Power Dissipation ................................. 17  
Absolute Maximum Ratings ................................... 17  
Timing Specifications ........................................... 17  
Output Drive Currents ......................................... 48  
Test Conditions .................................................. 48  
Capacitive Loading .............................................. 48  
Thermal Characteristics ........................................ 49  
144-Lead LQFP Pin Configurations ............................ 50  
136-Ball BGA Pin Configurations ............................... 51  
Package Dimensions ............................................... 55  
Surface-Mount Design .......................................... 56  
Automotive Products .............................................. 57  
Ordering Guide ..................................................... 58  
REVISION HISTORY  
3/10—Rev. E to Rev. F  
Revised Table 2, ADSP-2136x Family Features .................3  
Revised Figure 2, SHARC Core Block Diagram ................4  
Changed baud rate in  
Serial Peripheral (Compatible) Interface .........................6  
Revised Table 4, DMA Channels ...................................8  
Revised Table 5, Boot Mode Selection ............................8  
Revised Core to CLKIN Ratio Control description in  
Table 6, Pin Descriptions .......................................... 11  
Changed footnote number in Electrical Characteristics .... 14  
Revised text in Power-Up Sequencing .......................... 17  
Revised Figure 8, Recommended Circuit for Fundamental  
Mode Crystal Operation ........................................... 18  
Revised Table 25, Serial Ports—Internal Clock ............... 28  
Added footnote to Table 30, PWM Timing .................... 34  
Revised Table 45, Automotive Products ........................ 52  
Revised Ordering Guide ........................................... 53  
Rev. F  
|
Page 2 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
GENERAL DESCRIPTION  
The ADSP-2136x SHARC® processor is a member of the SIMD  
SHARC family of DSPs that feature Analog Devices, Inc., Super  
Harvard Architecture. The processor is source code-compatible  
with the ADSP-2126x and ADSP-2116x DSPs, as well as with  
first generation ADSP-2106x SHARC processors in SISD  
(single-instruction, single-data) mode. The ADSP-2136x is a  
32-/40-bit floating-point processor optimized for high  
1 Audio decoding algorithmsinclude PCM, Dolby Digital EX, Dolby Pro Logic IIx,  
DTS 96/24, Neo:6, DTS ES, MPEG-2 AAC, MP3, and functions like bass  
management, delay, speaker equalization, graphic equalization, and more.  
Decoder/post-processor algorithm combination support varies depending  
upon the chip version and the system configurations. Please visit  
www.analog.com for complete information.  
2 The ADSP-21362 and ADSP-21365 processors provide the Digital Transmission  
Content Protection protocol, a proprietary security protocol. Contact your  
Analog Devices sales office for more information.  
performance automotive audio applications with a large on-  
chip SRAM and ROM, multiple internal buses to eliminate I/O  
bottlenecks, and an innovative digital audio interface (DAI).  
The diagram on Page 1 shows the two clock domains that make  
up the ADSP-2136x processors. The core clock domain contains  
the following features:  
• Two processing elements, each of which comprises an  
ALU, multiplier, shifter, and data register file  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
• PM and DM buses capable of supporting four 32-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
As shown in the functional block diagram on Page 1, the  
ADSP-2136x uses two computational units to deliver a signifi-  
cant performance increase over the previous SHARC processors  
on a range of signal processing algorithms. With its SIMD com-  
putational hardware, the ADSP-2136x can perform two  
GFLOPS running at 333 MHz.  
Table 1 shows performance benchmarks for these devices.  
Table 2 shows the features of the individual product offerings.  
Table 1. Benchmarks (at 333 MHz)  
• One periodic interval timer with pinout  
• On-chip SRAM (3M bit)  
Speed  
(at 333 MHz)  
Benchmark Algorithm  
• On-chip mask-programmable ROM (4M bit)  
1024 Point Complex FFT (Radix 4, with reversal) 27.9 μs  
FIR Filter (per tap)1  
1.5 ns  
6.0 ns  
• JTAG test access port for emulation and boundary scan.  
The JTAG provides software debug through user break-  
points, which allow flexible exception handling.  
The diagram on Page 1 also shows the following architectural  
features:  
• I/O processor that handles 32-bit DMA for the peripherals  
• Six full duplex serial ports  
• Two SPI-compatible interface ports—primary on dedi-  
cated pins, secondary on DAI pins  
IIR Filter (per biquad)1  
Matrix Multiply (pipelined)  
[3×3] × [3×1]  
[4×4] × [4×1]  
13.5 ns  
23.9 ns  
Divide (y/x)  
10.5 ns  
16.3 ns  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode  
Table 2. ADSP-2136x Family Features  
• 8-bit or 16-bit parallel port that supports interfaces to off-  
chip memory peripherals  
• Digital audio interface that includes two precision clock  
generators (PCG), an input data port (IDP), an S/PDIF  
receiver/transmitter, 8-channel asynchronous sample rate  
converter, DTCP cipher, six serial ports, eight serial inter-  
faces, a 20-bit parallel input port, 10 interrupts, six flag  
outputs, six flag inputs, three timers, and a flexible signal  
routing unit (SRU)  
Feature  
RAM  
ROM  
3M bit 3M bit 3M bit  
4M bit 4M bit 4M bit  
3M bit 3M bit  
4M bit 4M bit  
Audio  
No  
No  
No  
Yes  
Yes  
SHARC FAMILY CORE ARCHITECTURE  
Decoders in  
ROM1  
The ADSP-2136x is code-compatible at the assembly level with  
the ADSP-2126x, ADSP-21160, and ADSP-21161, and with the  
first generation ADSP-2106x SHARC processors. The  
ADSP-2136x shares architectural features with the ADSP-2126x  
and ADSP-2116x SIMD SHARC processors, as shown in  
Figure 2 and detailed in the following sections.  
Pulse-Width Yes  
Modulation  
Yes  
Yes  
Yes  
Yes  
S/PDIF  
DTCP2  
SRC  
Yes  
No  
No  
Yes  
No  
Yes  
Yes  
Yes  
No  
Yes  
–128  
No SRC –140  
dB  
–128  
dB  
–128  
dB  
Performance dB  
Rev. F  
|
Page 3 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
When using the DAGs to transfer data in SIMD mode, two data  
SIMD Computational Engine  
values are transferred with each access of memory or  
the register file.  
The processor contains two computational processing elements  
that operate as a single-instruction, multiple-data (SIMD)  
engine. The processing elements are referred to as PEX and PEY  
and each contains an ALU, multiplier, shifter, and register file.  
PEX is always active, and PEY can be enabled by setting the  
PEYEN mode bit in the MODE1 register. When this mode is  
enabled, the same instruction is executed in both processing ele-  
ments, but each processing element operates on different data.  
This architecture is efficient at executing math intensive signal  
processing algorithms.  
Entering SIMD mode also has an effect on the way data is trans-  
ferred between memory and the processing elements. When in  
SIMD mode, twice the data bandwidth is required to sustain  
computational operation in the processing elements. Because of  
this requirement, entering SIMD mode also doubles the  
bandwidth between memory and the processing elements.  
Independent, Parallel Computation Units  
Within each processing element is a set of computational units.  
The computational units consist of an arithmetic/logic unit  
(ALU), multiplier, and shifter. These units perform all opera-  
tions in a single cycle. The three units within each processing  
element are arranged in parallel, maximizing computational  
throughput. Single multifunction instructions execute parallel  
ALU and multiplier operations. In SIMD mode, the parallel  
ALU and multiplier operations occur in both processing  
elements. These computation units support IEEE 32-bit,  
single-precision floating-point, 40-bit extended-precision  
floating-point, and 32-bit fixed-point data formats.  
S
JTAG  
FLAG TIMER INTERRUPT CACHE  
SIMD Core  
PM ADDRESS 24  
DMD/PMD 64  
5 STAGE  
PROGRAM SEQUENCER  
PM DATA 48  
DAG2  
16x32  
DAG1  
16x32  
PM ADDRESS 32  
SYSTEM  
I/F  
DM ADDRESS 32  
PM DATA 64  
USTAT  
4x32-BIT  
PX  
64-BIT  
DM DATA 64  
DATA  
SWAP  
RF  
Rx/Fx  
PEx  
RF  
Sx/SFx  
PEy  
ALU  
SHIFTER  
MULTIPLIER  
MULTIPLIER  
ALU  
SHIFTER  
16x40-BIT  
16x40-BIT  
MRB  
80-BIT  
MSB  
80-BIT  
MRF  
80-BIT  
MSF  
80-BIT  
ASTATy  
STYKy  
ASTATx  
STYKx  
Figure 2. SHARC Core Block Diagram  
Rev. F  
|
Page 4 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
processing, and are commonly used in digital filters and Fourier  
transforms. The two DAGs contain sufficient registers to allow  
the creation of up to 32 circular buffers (16 primary register sets,  
16 secondary). The DAGs automatically handle address pointer  
wraparound, reduce overhead, increase performance, and sim-  
plify implementation. Circular buffers can start and end at any  
memory location.  
Data Register File  
A general-purpose data register file is contained in each pro-  
cessing element. The register files transfer data between the  
computation units and the data buses, and store intermediate  
results. These 10-port, 32-register (16 primary, 16 secondary)  
files, combined with the ADSP-2136x enhanced Harvard  
architecture, allow unconstrained data flow between computa-  
tion units and internal memory. The registers in PEX are  
referred to as R0–R15 and in PEY as S0–S15.  
Flexible Instruction Set  
The 48-bit instruction word accommodates a variety of parallel  
operations for concise programming. For example, the  
processor can conditionally execute a multiply, an add, and a  
subtract in both processing elements while branching and fetch-  
ing up to four 32-bit values from memory—all in a single  
instruction.  
Context switch  
Many of the processor’s registers have secondary registers that  
can be activated during interrupt servicing for a fast context  
switch. The data registers in the register file, the DAG registers,  
and the multiplier result register all have secondary registers.  
The primary registers are active at reset, while the secondary  
registers are activated by control bits in a mode control register.  
On-Chip Memory  
The processor contains 3M bits of internal SRAM and 4M bits  
of internal ROM. Each block can be configured for different  
combinations of code and data storage (see Table 3). Each  
memory block supports single-cycle, independent accesses by  
the core processor and I/O processor. The processor’s memory  
architecture, in combination with its separate on-chip buses,  
allows two data transfers from the core and one from the I/O  
processor, in a single cycle.  
The SRAM can be configured as a maximum of 96K words of  
32-bit data, 192K words of 16-bit data, 64K words of 48-bit  
instructions (or 40-bit data), or combinations of different word  
sizes up to 3M bits. All of the memory can be accessed as 16-bit,  
32-bit, 48-bit, or 64-bit words. A 16-bit floating-point storage  
format is supported that effectively doubles the amount of data  
that can be stored on-chip. Conversion between the 32-bit  
floating-point and 16-bit floating-point formats is performed in  
a single instruction. While each memory block can store combi-  
nations of code and data, accesses are most efficient when one  
block stores data using the DM bus for transfers, and the other  
block stores instructions and data using the PM bus for  
transfers.  
Universal Registers  
The universal registers can be used for general purpose. The  
USTAT (4) registers allow easy bit manipulations (Set, Clear,  
Toggle, Test, XOR) for all system registers (control/status) of  
the core.  
The data bus exchange register PX permits data to be passed  
between the 64-bit PM data bus and the 64-bit DM data bus, or  
between the 40-bit register file and the PM/DM data bus. These  
registers contain hardware to handle the data width difference.  
Timer  
A core timer that can generate periodic software interrupts. The  
core timer can be configured to use FLAG3 as a timer expired  
signal.  
Single-Cycle Fetch of Instruction and Four Operands  
The processor features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data  
(see Figure 2). With the processor’s separate program and data  
memory buses and on-chip instruction cache, the processor can  
simultaneously fetch four operands (two over each data bus)  
and one instruction (from the cache), all in a single cycle.  
Using the DM bus and PM buses, with one bus dedicated to  
each memory block, assures single-cycle execution with two  
data transfers. In this case, the instruction must be available in  
the cache.  
Instruction Cache  
On-Chip Memory Bandwidth  
The processor includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and four  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
cache allows full-speed execution of core, looped operations  
such as digital filter multiply-accumulates, and FFT butterfly  
processing.  
The internal memory architecture allows three accesses at the  
same time to any of the four blocks, assuming no block con-  
flicts. The total bandwidth is gained with DMD and PMD  
(2 × 64-bits, core CLK) and the IOD bus (32-bit, PCLK).  
ROM-Based Security  
The processor has a ROM security feature that provides hard-  
ware support for securing user software code by preventing  
unauthorized reading from the internal code when enabled.  
When using this feature, the processor does not boot-load any  
external code, executing exclusively from internal ROM. Addi-  
tionally, the processor is not freely accessible via the JTAG port.  
Instead, a unique 64-bit key, which must be scanned in through  
Data Address Generators with Zero-Overhead Hardware  
Circular Buffer Support  
The processor’s two data address generators (DAGs) are used  
for indirect addressing and implementing circular data buffers  
in hardware. Circular buffers allow efficient programming of  
delay lines and other data structures required in digital signal  
Rev. F  
|
Page 5 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 3. ADSP-2136x Internal Memory Space  
IOP Registers 0x0000 0000–0003 FFFF  
Extended Precision Normal or  
Long Word (64 Bits)  
Instruction Word (48 Bits)  
Normal Word (32 Bits)  
Short Word (16 Bits)  
Block 0 ROM  
Block 0 ROM  
Block 0 ROM  
Block 0 ROM  
0x0004 0000–0x0004 7FFF  
0x0008 0000–0x0008 AAA9  
0x0008 0000–0x0008 FFFF  
0x0010 0000–0x0011 FFFF  
Reserved  
Reserved  
Reserved  
0x0004 8000–0x0004 BFFF  
0x0009 0000–0x0009 7FFF  
0x0012 0000–0x0012 FFFF  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
0x0004 C000–0x0004 FFFF  
0x0009 0000–0x0009 5554  
0x0009 8000–0x0009 FFFF  
0x0013 0000–0x0013 FFFF  
Block 1 ROM  
Block 1 ROM  
Block 1 ROM  
Block 1 ROM  
0x0005 0000–0x0005 7FFF  
0x000A 0000–0x000A AAA9  
0x000A 0000–0x000A FFFF  
0x0014 0000–0x0015 FFFF  
Reserved  
Reserved  
Reserved  
0x0005 8000–0x0005 BFFF  
0x000B 0000–0x000B 7FFF  
0x0016 0000–0x0016 FFFF  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
0x0005 C000–0x0005 FFFF  
0x000B 0000–0x000B 5554  
0x000B 8000–0x000B FFFF  
0x0017 0000–0x0017 FFFF  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
0x0006 0000–0x0006 1FFF  
0x000C 0000–0x000C 2AA9  
0x000C 0000–0x000C 3FFF  
0x0018 0000–0x0018 7FFF  
Reserved  
Reserved  
Reserved  
0x0006 2000–0x0006 FFFF  
0x000C 4000–0x000D FFFF  
0x0018 8000–0x001B FFFF  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
0x0007 0000–0x0007 1FFF  
0x000E 0000–0x000E 2AA9  
0x000E 0000–0x000E 3FFF  
0x001C 0000–0x001C 7FFF  
Reserved  
Reserved  
Reserved  
0x0007 2000–0x0007 FFFF  
0x000E 4000–0x000F FFFF  
0x001C 8000–0x001F FFFF  
Reserved  
0x0020 0000–0xFFFF FFFF  
the JTAG or test access port, will be assigned to each customer.  
The device will ignore a wrong key. Emulation features and  
external boot modes are only available after the correct key is  
scanned.  
Serial Peripheral (Compatible) Interface  
The processors contain two serial peripheral interface ports  
(SPIs). The SPI is an industry-standard synchronous serial link,  
enabling the processor’s SPI-compatible port to communicate  
with other SPI-compatible devices. The SPI consists of two data  
pins, one device select pin, and one clock pin. It is a full-duplex  
synchronous serial interface, supporting both master and slave  
modes and can operate at a maximum baud rate of fPCLK/4.  
The SPI port can operate in a multimaster environment by  
interfacing with up to four other SPI-compatible devices, either  
acting as a master or slave device. The ADSP-2136x SPI-  
compatible peripheral implementation also features program-  
mable baud rate, clock phase, and polarities. The SPI-  
compatible port uses open drain drivers to support a multimas-  
ter configuration and to avoid data contention.  
FAMILY PERIPHERAL ARCHITECTURE  
The ADSP-2136x family contains a rich set of peripherals that  
support a wide variety of applications, including high quality  
audio, medical imaging, communications, military, test equip-  
ment, 3D graphics, speech recognition, monitor control,  
imaging, and other applications.  
Parallel Port  
The parallel port provides interfaces to SRAM and peripheral  
devices. The multiplexed address and data pins (AD15–0) can  
access 8-bit devices with up to 24 bits of address, or 16-bit  
devices with up to 16 bits of address. In either mode, 8-bit or  
16-bit, the maximum data transfer rate is 55 Mbps.  
DMA transfers are used to move data to and from internal  
memory. Access to the core is also facilitated through the paral-  
lel port register read/write functions. The RD, WR, and ALE  
(address latch enable) pins are the control pins for the  
parallel port.  
Pulse-Width Modulation  
The PWM module is a flexible, programmable, PWM waveform  
generator that can be programmed to generate the required  
switching patterns for various applications related to motor and  
engine control or audio power control. The PWM generator can  
generate either center-aligned or edge-aligned PWM wave-  
forms. In addition, it can generate complementary signals on  
two outputs in paired mode or independent signals in non-  
paired mode (applicable to a single group of four PWM  
waveforms).  
Rev. F  
|
Page 6 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
The entire PWM module has four groups of four PWM outputs  
provide TDM support. One SPORT provides two transmit sig-  
nals while the other SPORT provides the two receive signals.  
The frame sync and clock are shared.  
Serial ports operate in four modes:  
• Standard DSP serial mode  
• Multichannel (TDM) mode  
• I2S mode  
each. Therefore, this module generates 16 PWM outputs in  
total. Each PWM group produces two pairs of PWM signals on  
the four PWM outputs.  
The PWM generator is capable of operating in two distinct  
modes while generating center-aligned PWM waveforms: single  
update mode or double update mode. In single update mode,  
the duty cycle values are programmable only once per PWM  
period. This results in PWM patterns that are symmetrical  
about the midpoint of the PWM period. In double update  
mode, a second updating of the PWM registers is implemented  
at the midpoint of the PWM period. In this mode, it is possible  
to produce asymmetrical PWM patterns that produce lower  
harmonic distortion in 3-phase PWM inverters.  
• Left-justified sample pair mode  
Left-justified sample pair mode is a mode where in each frame  
sync cycle two samples of data are transmitted/received—one  
sample on the high segment of the frame sync, the other on the  
low segment of the frame sync. Programs have control over var-  
ious attributes of this mode.  
Digital Audio Interface (DAI)  
Each of the serial ports supports the left-justified sample pair  
and I2S protocols (I2S is an industry-standard interface com-  
monly used by audio codecs, ADCs, and DACs, such as the  
Analog Devices AD183x family), with two data pins, allowing  
four left-justified sample pairs or I2S channels (using two stereo  
devices) per serial port, with a maximum of up to 24 I2S  
channels. The serial ports permit little-endian or big-endian  
transmission formats and word lengths selectable from 3 bits to  
32 bits. For the left-justified sample pair and I2S modes, data-  
word lengths are selectable between 8 bits and 32 bits. Serial  
ports offer selectable synchronization and transmit modes as  
well as optional μ-law or A-law companding selection on a per  
channel basis. Serial port clocks and frame syncs can be inter-  
nally or externally generated.  
The digital audio interface (DAI) provides the ability to connect  
various peripherals to any of the DSP’s DAI pins (DAI_P20–1).  
Programs make these connections using the signal routing unit  
(SRU, shown in Figure 1).  
The SRU is a matrix routing unit (or group of multiplexers) that  
enables the peripherals provided by the DAI to be intercon-  
nected under software control. This allows easy use of the  
DAI-associated peripherals for a wider variety of applications by  
using a larger set of algorithms than is possible with nonconfig-  
urable signal paths.  
The DAI includes six serial ports, an S/PDIF receiver/transmit-  
ter, a DTCP cipher, a precision clock generator (PCG), eight  
channels of asynchronous sample rate converters, an input data  
port (IDP), an SPI port, six flag outputs and six flag inputs, and  
three timers. The IDP provides an additional input path to the  
ADSP-2136x core, configurable as either eight channels of I2S  
serial data or as seven channels plus a single 20-bit wide syn-  
chronous parallel data acquisition port. Each data channel has  
its own DMA channel that is independent from the processor’s  
serial ports.  
S/PDIF-Compatible Digital Audio Receiver/Transmitter  
The S/PDIF transmitter has no separate DMA channels. It  
receives audio data in serial format and converts it into a  
biphase encoded signal. The serial data input to the transmitter  
can be formatted as left-justified, I2S, or right-justified with  
word widths of 16, 18, 20, or 24 bits.  
The serial data, clock, and frame sync inputs to the S/PDIF  
transmitter are routed through the signal routing unit (SRU).  
They can come from a variety of sources such as the SPORTs,  
external pins, the precision clock generators (PCGs), or the  
sample rate converters (SRC) and are controlled by the SRU  
control registers.  
For complete information on using the DAI, refer to the  
ADSP-2136x SHARC Processor Hardware Reference.  
Serial Ports  
The processor features six synchronous serial ports that provide  
an inexpensive interface to a wide variety of digital and mixed-  
signal peripheral devices such as Analog Devices’ AD183x fam-  
ily of audio codecs, ADCs, and DACs. The serial ports are made  
up of two data lines, a clock, and a frame sync. The data lines  
can be programmed to either transmit or receive and each data  
line has a dedicated DMA channel.  
Serial ports are enabled via 12 programmable and simultaneous  
receive or transmit pins that support up to 24 transmit or 24  
receive channels of audio data when all six SPORTs are enabled,  
or six full duplex TDM streams of 128 channels per frame.  
Digital Transmission Content Protection (DTCP)  
The DTCP specification defines a cryptographic protocol for  
protecting audio entertainment content from illegal copying,  
intercepting, and tampering as it traverses high performance  
digital buses, such as the IEEE 1394 standard. Only legitimate  
entertainment content delivered to a source device via another  
approved copy protection system (such as the DVD content  
scrambling system) is protected by this copy protection system.  
This feature is available on the ADSP-21362 and  
ADSP-21365 processors only. Licensing through DTLA is  
required for these products. Visit www.dtcp.com for more  
information.  
The serial ports operate at a maximum data rate of fPCLK/4.  
Serial port data can be automatically transferred to and from  
on-chip memory via dedicated DMA channels. Each of the  
serial ports can work in conjunction with another serial port to  
Rev. F  
|
Page 7 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Memory-to-Memory (MTM)  
I/O PROCESSOR FEATURES  
If the DTCP module is not used, the memory-to-memory DMA  
module allows internal memory copies for a standard DMA.  
The processor’s I/O provides many channels of DMA and con-  
trols the extensive set of peripherals described in the previous  
sections.  
Synchronous/Asynchronous Sample Rate Converter (SRC)  
DMA Controller  
The sample rate converter (SRC) contains four SRC blocks and  
is the same core as that used in the AD1896 192 kHz stereo  
asynchronous sample rate converter and provides up to 140 dB  
SNR. The SRC block is used to perform synchronous or  
asynchronous sample rate conversion across independent stereo  
channels, without using internal processor resources. The four  
SRC blocks can also be configured to operate together to con-  
vert multichannel audio data without phase mismatches.  
Finally, the SRC is used to clean up audio data from jittery clock  
sources such as the S/PDIF receiver.  
The processor’s on-chip DMA controllers allow data transfers  
without processor intervention. The DMA controller operates  
independently and invisibly to the processor core, allowing  
DMA operations to occur while the core is simultaneously exe-  
cuting its program instructions. DMA transfers can occur  
between the processor’s internal memory and its serial ports, the  
SPI-compatible (serial peripheral interface) ports, the IDP  
(input data port), the parallel data acquisition port (PDAP), or  
the parallel port (PP). See Table 4.  
The S/PDIF and SRC are not available on the ADSP-21363  
models.  
Table 4. DMA Channels  
Input Data Port (IDP)  
Peripheral  
SPORT  
ADSP-2136x  
12  
8
The IDP provides up to eight serial input channels—each with  
its own clock, frame sync, and data inputs. The eight channels  
are automatically multiplexed into a single 32-bit by eight-deep  
FIFO. Data is always formatted as a 64-bit frame and divided  
into two 32-bit words. The serial protocol is designed to receive  
audio channels in I2S, left-justified sample pair, or right-justi-  
fied mode. One frame sync cycle indicates one 64-bit left/right  
pair, but data is sent to the FIFO as 32-bit words (that is, one-  
half of a frame at a time). The processor supports 24- and 32-bit  
I2S, 24- and 32-bit left-justified, and 24-, 20-, 18- and 16-bit  
right-justified formats.  
IDP/PDAP  
SPI  
2
MTM/DTCP  
Parallel Port  
Total DMA Channels  
2
1
25  
SYSTEM DESIGN  
The following sections provide an introduction to system design  
options and power supply issues.  
Precision Clock Generator (PCG)  
Program Booting  
The precision clock generators (PCG) consist of two units, each  
of which generates a pair of signals (clock and frame sync)  
derived from a clock input signal. The units, A and B, are identi-  
cal in functionality and operate independently of each other.  
The two signals generated by each unit are normally used as a  
serial bit clock/frame sync pair.  
The internal memory of the processor boots at system power-up  
from an 8-bit EPROM via the parallel port, an SPI master, an  
SPI slave, or an internal boot. Booting is determined by the boot  
configuration (BOOT_CFG1–0) pins in Table 5. Selection of the  
boot source is controlled via the SPI as either a master or slave  
device, or it can immediately begin executing from ROM.  
Peripheral Timers  
Table 5. Boot Mode Selection  
The following three general-purpose timers can generate peri-  
odic interrupts and be independently set to operate in one of  
three modes:  
• Pulse waveform generation mode  
• Pulse width count/capture mode  
• External event watchdog mode  
Each general-purpose timer has one bidirectional pin and four  
registers that implement its mode of operation: a 6-bit configu-  
ration register, a 32-bit count register, a 32-bit period register,  
and a 32-bit pulse width register. A single control and status  
register enables or disables all three general-purpose timers  
independently.  
BOOT_CFG1–0  
Booting Mode  
00  
01  
10  
11  
SPI Slave Boot  
SPI Master Boot  
Parallel Port Boot via EPROM  
No booting occurs. Processor executes  
from internal ROM after reset.  
Phase-Locked Loop  
The processors use an on-chip phase-locked loop (PLL) to gen-  
erate the internal clock for the core. On power-up, the  
CLK_CFG1–0 pins are used to select ratios of 32:1, 16:1, and  
6:1. After booting, numerous other ratios can be selected via  
software control.  
Rev. F  
|
Page 8 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
The ratios are made up of software configurable numerator val-  
DEVELOPMENT TOOLS  
ues from 1 to 64 and software configurable divisor values of 1, 2,  
4, and 8.  
The processor is supported with a complete set of  
CROSSCORE®software and hardware development tools,  
including Analog Devices emulators and VisualDSP++®devel-  
opment environment. The same emulator hardware that  
supports other SHARC processors also fully emulates the  
ADSP-2136x processors.  
The VisualDSP++ project management environment lets pro-  
grammers develop and debug an application. This environment  
includes an easy-to-use assembler (based on an algebraic syn-  
tax), an archiver (librarian/library builder), a linker, a loader, a  
cycle-accurate instruction-level simulator, a C/C++ compiler,  
and a C/C++ runtime library that includes DSP and mathemati-  
cal functions. A key point for these tools is C/C++ code  
efficiency. The compiler has been developed for efficient trans-  
lation of C/C++ code to DSP assembly. The SHARC has  
architectural features that improve the efficiency of compiled  
C/C++ code.  
The VisualDSP++ debugger has a number of important fea-  
tures. Data visualization is enhanced by a plotting package that  
offers a significant level of flexibility. This graphical representa-  
tion of user data enables the programmer to quickly determine  
the performance of an algorithm. As algorithms grow in com-  
plexity, this capability can have increasing significance on the  
designer’s development schedule, increasing productivity. Sta-  
tistical profiling enables the programmer to nonintrusively poll  
the processor as it is running the program. This feature, unique  
to VisualDSP++, enables the software developer to passively  
gather important code execution metrics without interrupting  
the real-time characteristics of the program. Essentially, the  
developer can identify bottlenecks in software quickly and  
efficiently. By using the profiler, the programmer can focus on  
those areas in the program that impact performance and take  
corrective action.  
Power Supplies  
The processor has a separate power supply connection for the  
internal (VDDINT), external (VDDEXT), and analog (AVDD/AVSS  
)
power supplies. The internal and analog supplies must meet the  
1.2 V requirement for K, B, and Y grade models, and the 1.0 V  
requirement for Y models. (For information on the temperature  
ranges offered for this product, see Operating Conditions on  
Page 14, Package Information on Page 15, and Ordering Guide  
on Page 53.) The external supply must meet the 3.3 V require-  
ment. All external supply pins must be connected to the same  
power supply.  
Note that the analog supply pin (AVDD) powers the processor’s  
internal clock generator PLL. To produce a stable clock, it is rec-  
ommended that PCB designs use an external filter circuit for the  
A
VDD pin. Place the filter components as close as possible to the  
VDD/AVSS pins. For an example circuit, see Figure 3. (A  
A
recommended ferrite chip is the muRata BLM18AG102SN1D.)  
To reduce noise coupling, the PCB should use a parallel pair of  
power and ground planes for VDDINT and GND. Use wide traces  
to connect the bypass capacitors to the analog power (AVDD) and  
ground (AVSS) pins. Note that the AVDD and AVSS pins specified in  
Figure 3 are inputs to the processor and not the analog ground  
plane on the board—the AVSS pin should connect directly to dig-  
ital ground (GND) at the chip.  
ADSP-213xx  
100nF  
10nF  
1nF  
A
V
VDD  
DDINT  
HIGH-Z FERRITE  
BEAD CHIP  
A
VSS  
Through debugging both C/C++ and assembly programs with  
the VisualDSP++ debugger, programmers can:  
• View mixed C/C++ and assembly code (interleaved source  
and object information)  
LOCATE ALL COMPONENTS  
CLOSE TO A AND A PINS  
VDD  
VSS  
• Insert breakpoints  
Figure 3. Analog Power (AVDD) Filter Circuit  
• Set conditional breakpoints on registers, memory,  
and stacks  
Target Board JTAG Emulator Connector  
• Perform linear or statistical profiling of program execution  
• Fill, dump, and graphically plot the contents of memory  
• Perform source level debugging  
Analog Devices’ DSP Tools product line of JTAG emulators  
uses the IEEE 1149.1 JTAG test access port of the processor to  
monitor and control the target board processor during emula-  
tion. Analog Devices’ DSP Tools product line of JTAG  
emulators provides emulation at full processor speed, allowing  
inspection and modification of memory, registers, and proces-  
sor stacks. The processor’s JTAG interface ensures that the  
emulator does not affect target system loading or timing.  
• Create custom debugger windows  
The VisualDSP++ integrated development and debugging envi-  
ronment (IDDE) lets programmers define and manage DSP  
software development. Its dialog boxes and property pages let  
For complete information on Analog Devices’ SHARC DSP  
Tools product line of JTAG emulator operation, refer to the  
appropriate emulator user’s guide.  
CROSSCORE is a registered trademark of Analog Devices, Inc.  
VisualDSP++ is a registered trademark of Analog Devices, Inc.  
Rev. F  
|
Page 9 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
programmers configure and manage all of the SHARC develop-  
ment tools, including the color syntax highlighting in the  
VisualDSP++ editor. This capability permits programmers to:  
• Control how the development tools process inputs and  
generate outputs  
To use these emulators, the target board must include a header  
that connects the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, multiprocessor scan  
chains, signal buffering, signal termination, and emulator pod  
logic, refer to the Analog Devices JTAG Emulation Technical  
Reference (EE-68) on the Analog Devices website, www.ana-  
log.com. (Perform a site search on “EE-68.”) This document is  
updated regularly to keep pace with improvements to emulator  
support.  
• Maintain a one-to-one correspondence with the tool’s  
command line switches  
The VisualDSP++ Kernel (VDK) incorporates scheduling and  
resource management tailored specifically to address the mem-  
ory and timing constraints of DSP programming. These  
capabilities enable engineers to develop code more effectively,  
eliminating the need to start from the very beginning, when  
developing new application code. The VDK features include  
threads, critical and unscheduled regions, semaphores, events,  
and device flags. The VDK also supports priority-based, pre-  
emptive, cooperative, and time-sliced scheduling approaches. In  
addition, the VDK is designed to be scalable. If the application  
does not use a specific feature, the support code for that feature  
is excluded from the target system.  
Because the VDK is a library, a developer can decide whether to  
use it or not. The VDK is integrated into the VisualDSP++  
development environment, but can also be used via standard  
command line tools. When the VDK is used, the development  
environment assists the developer with many error-prone tasks  
and assists in managing system resources, automating the gen-  
eration of various VDK-based objects, and visualizing the  
system state, when debugging an application that uses the VDK.  
Use the expert linker to visually manipulate the placement of  
code and data on the embedded system. View memory utiliza-  
tion in a color-coded graphical form, easily move code and data  
to different areas of the processor or external memory with a  
drag of the mouse and examine runtime stack and heap usage.  
The expert linker is fully compatible with the existing linker def-  
inition file (LDF), allowing the developer to move between the  
graphical and textual environments.  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the SHARC processor family. Hard-  
ware tools include SHARC processor PC plug-in cards. Third  
party software tools include DSP libraries, real-time operating  
systems, and block diagram design tools.  
Evaluation Kit  
Analog Devices offers a range of EZ-KIT Lite®evaluation plat-  
forms to use as a cost-effective method to learn more about  
developing or prototyping applications with Analog Devices  
processors, platforms, and software tools. Each EZ-KIT Lite  
platform includes an evaluation board along with an evaluation  
suite of the VisualDSP++ development and debugging environ-  
ment with the C/C++ compiler, assembler, and linker. Also  
included are sample application programs, a power supply, and  
a USB cable. All evaluation versions of the software tools are  
limited for use only with the EZ-KIT Lite product.  
The USB controller on the EZ-KIT Lite board connects the  
board to the USB port of the user’s PC, enabling the  
VisualDSP++ evaluation suite to emulate the on-board proces-  
sor in-circuit. This permits the customer to download, execute,  
and debug programs for the EZ-KIT Lite system. It also allows  
in-circuit programming of the on-board flash device to store  
user-specific boot code, enabling the board to run as a stand-  
alone unit without being connected to the PC.  
With a full version of VisualDSP++ installed (sold separately),  
engineers can develop software for the EZ-KIT Lite or any cus-  
tom defined system. Connecting one of Analog Devices’ JTAG  
emulators to the EZ-KIT Lite board enables high speed, non-  
intrusive emulation.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the  
processor’s architecture and functionality. For detailed informa-  
tion on the ADSP-2136x family core architecture and  
instruction set, refer to the ADSP-2136x SHARC Processor  
Hardware Reference and the ADSP-2136x SHARC Processor  
Programming Reference.  
Designing an Emulator-Compatible DSP Board (Target)  
The Analog Devices family of emulators are tools that every  
DSP developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG test  
access port (TAP) on each JTAG processor. Nonintrusive in-  
circuit emulation is assured by the use of the processor’s JTAG  
interface. (The emulator does not affect target system loading or  
timing.) The emulator uses the TAP to access the internal fea-  
tures of the processor, allowing the developer to load code, set  
breakpoints, observe variables, observe memory, and examine  
registers. The processor must be halted to send data and com-  
mands, but once an operation has been completed by the  
emulator, the DSP system is set running at full speed with no  
impact on system timing.  
EZ-KIT Lite is a registered trademark of Analog Devices, Inc.  
Rev. F  
|
Page 10 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
PIN FUNCTION DESCRIPTIONS  
The processor’s pin definitions are listed below. Inputs identi-  
fied as synchronous (S) must meet timing requirements with  
respect to CLKIN (or with respect to TCK for TMS and TDI).  
Inputs identified as asynchronous (A) can be asserted asynchro-  
nously to CLKIN (or to TCK for TRST). Tie or pull unused  
inputs to VDDEXT or GND, except for the following:  
DAI_Px, SPICLK, MISO, MOSI, EMU, TMS, TRST, TDI, and  
AD15–0. Note: These pins have pull-up resistors.  
The following symbols appear in the Type column of Table 6:  
A = asynchronous, G = ground, I = input, O = output,  
P = power supply, S = synchronous, (A/D) = active drive,  
(O/D) = open drain, and T = three-state, (pd) = pull-down resis-  
tor, (pu) = pull-up resistor.  
Table 6. Pin Descriptions  
State During and  
After Reset  
Pin  
Type  
Function  
AD15–0  
I/O/T  
(pu)  
Three-state with  
pull-up enabled  
Parallel Port Address/Data. The ADSP-2136x parallel port and its corre-  
sponding DMA unit output addresses and data for peripherals on these  
multiplexed pins. The multiplex state is determined by the ALE pin. The  
parallel port can operate in either 8-bit or 16-bit mode. Each AD pin has a  
22.5 kΩinternal pull-up resistor. For details about theAD pin operation, refer  
to the ADSP-2136x SHARC Processor Hardware Reference .  
For 8-bit mode: ALE is automatically asserted whenever a change occurs in  
the upper 16 external address bits, ADDR23–8; ALE is used in conjunction  
with an external latch to retain the values of the ADDR23–8.  
For detailed information on I/O operations and pin multiplexing, refer to the  
ADSP-2136x SHARC Processor Hardware Reference.  
RD  
O
(pu)  
Three-state, driven ParallelPortReadEnable. RD isassertedlowwhenevertheprocessorreads  
high1  
8-bit or16-bitdata from anexternal memory device. When AD15–0 areflags,  
this pin remains deasserted. RD has a 22.5 kΩ internal pull-up resistor.  
WR  
ALE  
O
(pu)  
Three-state, driven Parallel Port Write Enable. WR is asserted low whenever the processor  
high1  
writes 8-bit or 16-bit data to an external memory device. When AD15–0 are  
flags, this pin remains deasserted. WR has a 22.5 kΩ internal pull-up resistor.  
O
(pd)  
Three-state, driven Parallel Port Address Latch Enable. ALE is asserted whenever the  
low1  
processor drives a new address on the parallel port address pins. On reset,  
ALE is active high. However, it can be reconfigured using software to be  
active low. When AD15–0 are flags, this pin remains deasserted. ALE has a  
20 kΩ internal pull-down resistor.  
FLAG[0]/IRQ0/SPIFLG[0]  
FLAG[1]/IRQ1/SPIFLG[1]  
FLAG[2]/IRQ2/SPIFLG[2]  
I/O  
I/O  
I/O  
FLAG[0] INPUT  
FLAG[1] INPUT  
FLAG[2] INPUT  
FLAG[3] INPUT  
FLAG0/Interrupt Request0/SPI0 Slave Select.  
FLAG1/Interrupt Request1/SPI1 Slave Select.  
FLAG2/Interrupt Request 2/SPI2 Slave Select.  
FLAG3/Timer Expired/SPI3 Slave Select.  
Digital Audio Interface Pins. These pins provide the physical interface to  
the SRU. The SRU configuration registers define the combination of on-chip  
peripheral inputs or outputs connected to the pin and to the pin’s output  
enable. The configuration registers of these peripherals then determine the  
exact behavior of the pin. Any input or output signal present in the SRU can  
be routed to any of these pins. The SRU provides the connection from the  
serial ports, input data port, precision clock generators and timers, sample  
rate converters and SPI to the DAI_P20–1 pins. These pins have internal 22.5  
kΩpull-upresistorsthatareenabledonreset. Thesepull-upscanbedisabled  
using the DAI_PIN_PULLUP register.  
FLAG[3]/TMREXP/SPIFLG[3] I/O  
DAI_P20–1 I/O/T  
(pu)  
Three-state with  
programmable  
pull-up  
Rev. F  
|
Page 11 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 6. Pin Descriptions (Continued)  
State During and  
After Reset  
Pin  
Type  
Function  
SPICLK  
I/O  
(pu)  
Three-state with  
pull-up enabled,  
Serial Peripheral Interface Clock Signal. Driven by the master, this signal  
controls the rate at which data is transferred. The master can transmit data  
driven high in SPI- at a variety of baud rates. SPICLK cycles once for each bit transmitted. SPICLK  
master boot mode is a gated clock active during data transfers, only for the length of the trans-  
ferred word. Slave devices ignore the serial clock if the slave select input is  
driven inactive (high). SPICLK is used to shift out and shift in the data driven  
on the MISO and MOSI lines. The data is always shifted out on one clock edge  
and sampled on the opposite edge of the clock. Clock polarity and clock  
phaserelativetodataareprogrammable into the SPICTL control registerand  
define the transfer format. SPICLK has a 22.5 kΩ internal pull-up resistor.  
SPIDS  
I
Input only  
Serial Peripheral Interface Slave Device Select. An active low signal used  
to select the processor as an SPI slave device. This input signal behaves like  
a chip select, and is provided by the master device for the slave devices. In  
multimaster mode the processor’s SPIDS signal can be driven by a slave  
device to signal to the processor (as SPI master) that an error has occurred,  
as some other device is also trying to be the master device. If asserted low  
when the device is in master mode, it is considered a multimaster error. For  
a single-master, multiple-slave configuration where flag pins are used, this  
pin must be tied or pulled high to VDDEXT on the master device. For processor  
to processor SPI interaction, any of the master processor’s flag pins can be  
used to drive the SPIDS signal on the SPI slave device.  
MOSI  
MISO  
I/O (O/D)  
(pu)  
Three-state with  
pull-up enabled,  
driven low in SPI-  
SPI Master Out Slave In. If the ADSP-2136x is configured as a master, the  
MOSI pin becomes a data transmit (output) pin, transmitting output data. If  
the processor is configured as a slave, the MOSI pin becomes a data receive  
master boot mode (input) pin, receiving input data. In an SPI interconnection, the data is shifted  
out from the MOSI output pin of the master and shifted into the MOSI  
input(s) of the slave(s). MOSI has a 22.5 kΩ internal pull-up resistor.  
I/O (O/D)  
(pu)  
Three-state with  
pull-up enabled  
SPI Master In Slave Out. If the ADSP-2136x is configured as a master, the  
MISO pin becomes a data receive (input) pin, receiving input data. If the  
processor is configured as a slave, the MISO pin becomes a data transmit  
(output) pin, transmitting output data. In an SPI interconnection, the data is  
shifted out from the MISO output pin of the slave and shifted into the MISO  
input pin of the master. MISO has a 22.5 kΩ internal pull-up resistor. MISO  
can be configured as O/D by setting the OPD bit in the SPICTL register.  
Note: Only one slave is allowed to transmit data at any given time. To enable  
broadcast transmission to multiple SPI slaves, the processor’s MISO pin can  
be disabled by setting Bit 5 (DMISO) of the SPICTL register equal to 1.  
BOOT_CFG1–0  
CLKIN  
I
I
Input only  
Input only  
Boot Configuration Select. This pin is used to select the boot mode for the  
processor. The BOOT_CFG pins must be valid before reset is asserted. For a  
description of the boot mode, refer to the ADSP-2136x SHARC Processor  
Hardware Reference .  
Local Clock In. Used in conjunction with XTAL. CLKIN is the ADSP-2136x  
clock input. It configures the ADSP-2136x to use either its internal clock  
generator or an external clock source. Connecting the necessary compo-  
nents to CLKIN and XTAL enables the internal clock generator. Connecting  
the external clock to CLKIN while leaving XTAL unconnected configures the  
processors to use the external clock source such as an external clock oscil-  
lator. The core is clocked either by the PLL output or this clock input  
depending on the CLK_CFG1–0 pin settings. CLKIN should not be halted,  
changed, or operated below the specified frequency.  
XTAL  
O
Output only2  
Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an  
external crystal.  
Rev. F  
|
Page 12 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 6. Pin Descriptions (Continued)  
State During and  
After Reset  
Pin  
Type  
Function  
CLK_CFG1–0  
I
Input only  
Core to CLKIN Ratio Control. These pins set the start up clock frequency.  
Note that the operating frequency can be changed by programming the PLL  
multiplier and divider in the PMCTL register at any time after the core comes  
out of reset. The allowed values are:  
00 = 6:1  
01 = 32:1  
10 = 16:1  
11 = reserved.  
RESETOUT  
RESET  
O
Output only  
Input only  
Reset Out. Drives out the core reset signal to an external device.  
I/A  
Processor Reset. Resets the ADSP-2136x to a known state. Upon  
deassertion, there is a 4096 CLKIN cycle latency for the PLL to lock. After this  
time, the core begins program execution from the hardware reset vector  
address. The RESET input must be asserted (low) at power-up.  
TCK  
I
Input only3  
Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be  
asserted (pulsed low) after power-up or held low for proper operation of the  
processors.  
TMS  
TDI  
I/S  
(pu)  
Three-state with  
pull-up enabled  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a  
22.5 kΩ internal pull-up resistor.  
I/S  
(pu)  
Three-state with  
pull-up enabled  
Three-state4  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI  
has a 22.5 kΩ internal pull-up resistor.  
TDO  
TRST  
O
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
I/A  
(pu)  
Three-state with  
pull-up enabled  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted  
(pulsed low) after power-up or held low for proper operation of the ADSP-  
2136x. TRST has a 22.5 kΩ internal pull-up resistor.  
EMU  
VDDINT  
O (O/D)  
(pu)  
Three-state with  
pull-up enabled  
Emulation Status. Must be connected to the processor’s JTAG emulators  
target board connector only. EMU has a 22.5 kΩ internal pull-up resistor.  
P
Core Power Supply. Nominally +1.2 V dc for the K, B grade models, and 1.0  
V dc for the Y grade models, and supplies the processor’s core (13 pins).  
VDDEXT  
AVDD  
P
P
I/O Power Supply. Nominally +3.3 V dc (6 pins).  
Analog Power Supply. Nominally +1.2 V dc for the K, B grade models, and  
1.0 V dc for the Y grade models, and supplies the processor’s internal PLL  
(clock generator). This pin has the same specifications as VDDINT, except that  
added filtering circuitry is required. For more information, see Power  
Supplies on Page 9.  
AVSS  
G
G
Analog Power Supply Return.  
Power Supply Return. (54 pins)  
GND  
1 RD, WR, and ALE are three-stated (and not driven) only when RESET is active.  
2 Output only is a three-state driver with its output path always enabled.  
3
Input only is a three-state driver with both output path and pull-up disabled.  
4 Three-state is a three-state driver with pull-up disabled.  
Rev. F  
|
Page 13 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SPECIFICATIONS  
Specifications are subject to change without notice.  
OPERATING CONDITIONS  
K Grade  
Min Max  
B Grade  
Min Max  
Y Grade  
Min Max  
Parameter  
Description  
Unit  
VDDINT  
AVDD  
Internal (Core) Supply Voltage  
1.14 1.26  
1.14 1.26  
0.95 1.05  
V
Analog (PLL) Supply Voltage  
1.14 1.26  
1.14 1.26  
0.95 1.05  
V
VDDEXT  
External (I/O) Supply Voltage  
3.13 3.47  
3.13 3.47  
3.13 3.47  
V
1
VIH  
High Level Input Voltage @ VDDEXT = Max  
Low Level Input Voltage @ VDDEXT = Min  
High Level Input Voltage @ VDDEXT = Max  
Low Level Input Voltage @ VDDEXT = Min  
Junction Temperature 136-Ball CSP_BGA  
Junction Temperature 144-Lead LQFP_EP  
2.0 VDDEXT + 0.5  
–0.5 +0.8  
2.0 VDDEXT + 0.5  
–0.5 +0.8  
2.0 VDDEXT + 0.5  
–0.5 +0.8  
V
1
VIL  
V
CLKIN2  
VIH  
1.74 VDDEXT + 0.5  
–0.5 +1.19  
1.74 VDDEXT + 0.5  
–0.5 +1.19  
–40 +125  
–40 +125  
1.74 VDDEXT + 0.5  
–0.5 +1.19  
–40 +125  
–40 +125  
V
_
VIL  
V
_
CLKIN  
3, 4  
TJ  
TJ  
0
0
+110  
+110  
°C  
°C  
3, 4  
1 Applies to input and bidirectional pins: AD15–0, FLAG3–0, DAI_Px, SPICLK, MOSI, MISO, SPIDS, BOOT_CFGx, CLK_CFGx, RESET, TCK, TMS, TDI, and TRST.  
2 Applies to input pin CLKIN.  
3 See Thermal Characteristics on Page 45 for information on thermal specifications.  
4 See Estimating Power for the ADSP-21362 SHARC Processors (EE-277) for further information.  
ELECTRICAL CHARACTERISTICS  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
1
VOH  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
@ VDDEXT = Min, IOH = –1.0 mA2  
@ VDDEXT = Min, IOL = 1.0 mA2  
@ VDDEXT = Max, VIN = VDDEXT Max  
@ VDDEXT = Max, VIN = 0 V  
@ VDDEXT = Max, VIN = 0 V  
@ VDDEXT = Max, VIN = VDDEXT Max  
@ VDDEXT = Max, VIN = 0 V  
@ VDDEXT = Max, VIN = 0 V  
tCCLK = Min, VDDINT = Nom  
AVDD = Max  
2.4  
V
1
VOL  
0.4  
10  
V
3, 4  
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
pF  
3
IIL  
10  
4
IILPU  
Low Level Input Current Pull-Up  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current Pull-Up  
Supply Current (Internal)  
Supply Current (Analog)  
200  
10  
5, 6  
IOZH  
5
IOZL  
10  
6
IOZLPU  
200  
800  
10  
INTYP7, 8  
IDD  
-
9
IAVDD  
10, 11  
CIN  
Input Capacitance  
fIN = 1 MHz, TCASE = 25°C, VIN = 1.2 V  
4.7  
1 Applies to output and bidirectional pins: AD15–0, RD, WR, ALE, FLAG3–0, DAI_Px, SPICLK, MOSI, MISO, EMU, TDO, and XTAL.  
2 See Output Drive Currents on Page 44 for typical drive current capabilities.  
3 Applies to input pins: SPIDS, BOOT_CFGx, CLK_CFGx, TCK, RESET, and CLKIN.  
4 Applies to input pins with 22.5 kΩ internal pull-ups: TRST, TMS, TDI.  
5 Applies to three-stateable pins: FLAG3–0.  
6 Applies to three-stateable pins with 22.5 kΩ pull-ups: AD15–0, DAI_Px, SPICLK, EMU, MISO, and MOSI.  
7 Typical internal current data reflects nominal operating conditions.  
8 See Estimating Power for the ADSP-21362 SHARC Processors (EE-277) for further information.  
9 Characterized, but not tested.  
10Applies to all signal pins.  
11Guaranteed, but not tested.  
Rev. F  
|
Page 14 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 8. Absolute Maximum Ratings  
PACKAGE INFORMATION  
The information presented in Figure 4 provides details about  
the package branding for the ADSP-2136x processor. For a  
complete listing of product availability, see Ordering Guide on  
Page 53.  
Parameter  
Internal (Core) Supply Voltage (VDDINT  
Analog (PLL) Supply Voltage (AVDD  
Rating  
)
–0.3 V to +1.5 V  
–0.3 V to +1.5 V  
–0.3 V to +4.6 V  
–0.5 V to +3.8 V  
–0.5 V to VDDEXT + 0.5 V  
200 pF  
)
External (I/O) Supply Voltage (VDDEXT  
Input Voltage  
)
Output Voltage Swing  
a
ADSP-2136x  
tppZ-cc  
Load Capacitance  
Storage Temperature Range  
Junction Temperature Under Bias  
–65°C to +150°C  
125°C  
vvvvvv.xn.n  
# yyww country_of_origin  
TIMING SPECIFICATIONS  
S
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times. For  
voltage reference levels, see Figure 38 on Page 44 under Test  
Conditions .  
Switching Characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
Figure 4. Typical Package Brand  
Table 7. Package Brand Information  
Brand Key  
t
Field Description  
Temperature Range  
Package Type  
pp  
Z
RoHS Compliant Designation  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
cc  
vvvvvv.x  
n.n  
#
RoHS Compliant Designation  
Date Code  
yyww  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
Core Clock Requirements  
The processor’s internal clock (a multiple of CLKIN) provides  
the clock signal for timing internal memory, processor core, and  
serial ports. During reset, program the ratio between the proces-  
sor’s internal clock frequency and external (CLKIN) clock  
frequency with the CLK_CFG1–0 pins.  
The processor’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL,  
see Figure 5). This PLL-based clocking minimizes the skew  
between the system clock (CLKIN) signal and the processor’s  
internal clock.  
MAXIMUM POWER DISSIPATION  
See Estimating Power for the ADSP-21362 SHARC Processors  
(EE-277) for detailed thermal and power information regarding  
maximum power dissipation. For information on package ther-  
mal specifications, see Thermal Characteristics on Page 45.  
Voltage Controlled Oscillator  
ABSOLUTE MAXIMUM RATINGS  
In application designs, the PLL multiplier value should be  
selected in such a way that the VCO frequency never exceeds  
Stresses greater than those listed in Table 8 may cause perma-  
nent damage to the device. These are stress ratings only;  
functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
f
VCO specified in Table 11.  
• The product of CLKIN and PLLM must never exceed 1/2  
f
VCO (max) in Table 11 if the input divider is not enabled  
(INDIV = 0).  
Rev. F  
|
Page 15 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
• The product of CLKIN and PLLM must never exceed fVCO  
(max) in Table 11 if the input divider is enabled  
(INDIV = 1).  
The VCO frequency is calculated as follows:  
VCO = 2 × PLLM × fINPUT  
CCLK = (2 × PLLM × fINPUT) ÷ (2 × PLLN)  
Note the definitions of the clock periods that are a function of  
CLKIN and the appropriate ratio control shown in Table 9. All  
of the timing specifications for the ADSP-2136x peripherals are  
defined in relation to tPCLK. Refer to the peripheral specific sec-  
tion for each peripheral’s timing information.  
f
f
Table 9. Clock Periods  
where:  
VCO = VCO output  
Timing  
Requirements  
f
Description  
PLLM = Multiplier value programmed in the PMCTL register.  
During reset, the PLLM value is derived from the ratio selected  
using the CLK_CFG pins in hardware.  
PLLN = 1, 2, 4, 8 based on the PLLD value programmed on the  
PMCTL register. During reset this value is 1.  
tCK  
CLKIN Clock Period  
tCCLK  
tPCLK  
Processor Core Clock Period  
Peripheral Clock Period = 2 × tCCLK  
Figure 5 shows core to CLKIN relationships with external oscil-  
lator or crystal. The shaded divider/multiplier blocks denote  
where clock ratios can be set through hardware or software  
using the power management control register (PMCTL). For  
more information, refer to the ADSP-2136x SHARC Processor  
Hardware Reference.  
f
f
f
INPUT = Input frequency to the PLL.  
INPUT = CLKIN when the input divider is disabled or  
INPUT = CLKIN ÷ 2 when the input divider is enabled  
PLL  
PLLI  
f
VCO  
CLKIN  
BUF  
CLK  
CLKIN  
DIVIDER  
CCLK  
PCLK  
LOOP  
FILTER  
PLL  
DIVIDER  
VCO  
f
INPUT  
f
CCLK  
XTAL  
PMCTL  
(2XPLLN)  
DIVIDE  
BY 2  
PMCTL  
(INDIV)  
PMCTL  
(PLLBP)  
PLL  
MULTIPLIER  
PMCTL (CLKOUTEN)  
CLK_CFGx/PMCTL (2XPLLM)  
CLKOUT (TEST ONLY)  
RESETOUT  
CORERST  
BUF  
DELAY OF  
4096 CLKIN  
CYCLES  
RESETOUT  
RESET  
Figure 5. Core Clock and System Clock Relationship to CLKIN  
Rev. F  
|
Page 16 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Power-Up Sequencing  
The timing requirements for processor startup are given in  
Table 10. Note that during power-up, when the VDDINT power  
supply comes up after VDDEXT, a leakage current of the order of  
three-state leakage current pull-up, pull-down, may be observed  
on any pin, even if that is an input only (for example the RESET  
pin) until the VDDINT rail has powered up.  
Table 10. Power-Up Sequencing Timing Requirements (Processor Startup)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDDINT/VDDEXT On  
VDDINT On Before VDDEXT  
0
ns  
tIVDDEVDD  
–50  
+200  
200  
ms  
ms  
μs  
1
tCLKVDD  
CLKIN Valid After VDDINT/VDDEXT Valid  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
0
tCLKRST  
102  
20  
tPLLRST  
μs  
Switching Characteristic  
3, 4  
tCORERST  
Core Reset Deasserted After RESET Deasserted  
4096tCK + 2 tCCLK  
1 Valid VDDINT/VDDEXT assumes that the supplies are fully ramped to their 1.2 V rails and 3.3 V rails. Voltage ramp rates can vary from microseconds to hundreds of milliseconds,  
depending on the design of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case start-up timing of crystal oscillators. Refer to your crystal oscillator manufacturer’s data sheet for start-up time.  
Assume a 25 ms maximum oscillator start-up time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Applies after the power-up sequence is complete. Subsequent resets require a minimum of 4 CLKIN cycles for RESET to be held low to properly initialize and propagate  
default states at all I/O pins.  
4 The 4096 cycle count depends on tSRST specification in Table 12. If setup time is not met, 1 additional CLKIN cycle can be added to the core reset time, resulting in 4097 cycles  
maximum.  
tRSTVDD  
RESET  
V
DDINT  
tIVDDEVDD  
V
DDEXT  
tCLKVDD  
CLKIN  
tCLKRST  
CLK_CFG1–0  
RESETOUT  
tPLLRST  
tCORERST  
Figure 6. Power-Up Sequencing  
Rev. F  
|
Page 17 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Clock Input  
Table 11. Clock Input  
200 MHz1  
Max  
333 MHz2  
Parameter  
Unit  
Min  
Min  
Max  
Timing Requirements  
tCK  
CLKIN Period  
303  
100  
181  
100  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
12.51  
12.51  
7.51  
7.51  
ns  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to 2.0 V)  
CCLK Period  
ns  
3
3
ns  
4
tCCLK  
5.01  
200  
10  
3.01  
200  
10  
ns  
5
fvco  
VCO Frequency  
600  
+250  
800  
+250  
MHz  
ps  
6,7  
tCKJ  
CLKIN Jitter Tolerance  
–250  
–250  
1 Applies to all 200 MHz models. See Ordering Guide on Page 53.  
2 Applies to all 333 MHz models. See Ordering Guide on Page 53.  
3 Applies only for CLK_CFG1–0 = 00 and default values for PLL control bits in PMCTL.  
4 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK  
.
5 See Figure 5 on Page 16 for VCO diagram.  
6 Actual input jitter should be combined with AC specifications for accurate timing analysis.  
7 Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.  
tCKJ  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 7. Clock Input  
Clock Signals  
The processor can use an external clock or a crystal. Refer to the  
CLKIN pin description in Table 6 on Page 11. The user applica-  
tion program can configure the processor to use its internal  
clock generator by connecting the necessary components to the  
CLKIN and XTAL pins. Figure 8 shows the component connec-  
tions used for a fundamental frequency crystal operating in  
parallel mode.  
ADSP-2136x  
R1  
XTAL  
CLKIN  
1MΩ*  
R2  
47Ω  
*
C1  
22pF  
C2  
22pF  
Y1  
Note that the clock rate is achieved using a 16.67 MHz crystal  
and a PLL multiplier ratio 16:1. (CCLK:CLKIN achieves a clock  
speed of 266.72 MHz.) To achieve the full core clock rate, pro-  
grams need to configure the multiplier bits in the  
PMCTL register.  
24.576MHz  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL  
DRIVE POWER. REFER TO CRYSTAL  
MANUFACTURER’S SPECIFICATIONS.  
*TYPICAL VALUES  
Figure 8. Recommended Circuit for Fundamental Mode Crystal Operation  
Rev. F  
|
Page 18 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Reset  
Table 12. Reset  
Parameter  
Min  
Unit  
Timing Requirements  
1
tWRST  
RESET Pulse Width Low  
4tCK  
8
ns  
ns  
tSRST  
RESET Setup Before CLKIN Low  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 μs while RESET is low, assuming stable  
VDD and CLKIN (not including start-up time of external clock oscillator).  
CLKIN  
tWRST  
tSRST  
RESET  
Figure 9. Reset  
Interrupts  
The following timing specification applies to the FLAG0,  
FLAG1, and FLAG2 pins when they are configured as IRQ0,  
IRQ1, and IRQ2 interrupts.  
Table 13. Interrupts  
Parameter  
Min  
Unit  
Timing Requirement  
tIPW  
IRQx Pulse Width  
2 × tPCLK +2  
ns  
DAI_P20–1  
FLAG2–0  
(IRQ2–0)  
tIPW  
Figure 10. Interrupts  
Rev. F  
|
Page 19 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Core Timer  
The following timing specification applies to FLAG3 when it is  
configured as the core timer (TMREXP pin).  
Table 14. Core Timer  
Parameter  
Min  
Unit  
Switching Characteristic  
tWCTIM  
TMREXP Pulse Width  
2 × tPCLK – 1  
ns  
FLAG3  
tWCTIM  
(TMREXP)  
Figure 11. Core Timer  
Timer PWM_OUT Cycle Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in PWM_OUT (pulse-width modulation) mode.  
Timer signals are routed to the DAI_P20–1 pins through the  
SRU. Therefore, the timing specifications provided below are  
valid at the DAI_P20–1 pins.  
Table 15. Timer PWM_OUT Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tPWMO  
Timer Pulse Width Output  
2 tPCLK – 1  
2(231 – 1) tPCLK  
ns  
tPWMO  
DAI_P20–1  
(TIMER2–0)  
Figure 12. Timer PWM_OUT Timing  
Rev. F  
|
Page 20 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Timer WDTH_CAP Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in WDTH_CAP (pulse width count and capture)  
mode. Timer signals are routed to the DAI_P20–1 pins through  
the SRU. Therefore, the timing specification provided below are  
valid at the DAI_P20–1 pins.  
Table 16. Timer Width Capture Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tPWI  
Timer Pulse Width  
2 tPCLK  
2(231– 1) tPCLK  
ns  
tPWI  
DAI_P20–1  
(TIMER2–0)  
Figure 13. Timer Width Capture Timing  
DAI Pin to Pin Direct Routing  
For direct pin connections only (for example, DAI_PB01_I to  
DAI_PB02_O).  
Table 17. DAI Pin to Pin Routing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tDPIO  
Delay DAI Pin Input Valid to DAI Output Valid  
1.5  
10  
ns  
DAI_Pn  
DAI_Pm  
tDPIO  
Figure 14. DAI Pin to Pin Direct Routing  
Rev. F  
|
Page 21 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
inputs and outputs are not directly routed to/from DAI pins (via  
Precision Clock Generator (Direct Pin Routing)  
pin buffers) there is no timing data available. All timing param-  
eters and switching characteristics apply to external DAI pins  
(DAI_P01 through DAI_P20).  
This timing is only valid when the SRU is configured such that  
the precision clock generator (PCG) takes its inputs directly  
from the DAI pins (via pin buffers) and sends its outputs  
directly to the DAI pins. For the other cases, where the PCG’s  
Table 18. Precision Clock Generator (Direct Pin Routing)  
K and B Grade  
Y Grade  
Parameter  
Min  
Max  
Max  
Unit  
Timing Requirements  
tPCGIP  
tSTRIG  
Input Clock Period  
tPCLK × 4  
4.5  
ns  
ns  
PCG Trigger Setup Before Falling  
Edge of PCG Input Clock  
tHTRIG  
PCG Trigger Hold After Falling  
Edge of PCG Input Clock  
3
ns  
Switching Characteristics  
tDPCGIO PCG Output Clock and Frame Sync  
Active Edge Delay After PCG Input 2.5  
Clock  
10  
10  
ns  
ns  
tDTRIGCLK PCG Output Clock Delay After PCG 2.5 + (2.5 × tPCGIP  
Trigger  
)
10 + (2.5 × tPCGIP  
)
12 + (2.5 × tPCGIP)  
tDTRIGFS  
PCG Frame Sync Delay After PCG  
Trigger  
2.5 + ((2.5 + D – PH) × tPCGIP  
)
10 + ((2.5 + D – PH) × tPCGIP  
)
12 + ((2.5 + D – PH) × tPCGIP) ns  
ns  
1
tPCGOP  
Output Clock Period  
2 × tPCGIP – 1  
D = FSxDIV, PH = FSxPHASE. For more information, refer to the ADSP-2136x SHARC Processor Hardware Reference, “Precision Clock Generators”  
chapter.  
1 In normal mode, tPCGOP (min) = 2 × tPCGIP  
.
tSTRIG  
tHTRIG  
DAI_Pn  
PCG_TRIGx_I  
tPCGIP  
DAI_Pm  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
DAI_Py  
PCG_CLKx_O  
tDTRIGCLK  
tPCGOP  
tDPCGIO  
DAI_Pz  
PCG_FSx_O  
tDTRIGFS  
Figure 15. Precision Clock Generator (Direct Pin Routing)  
Rev. F  
|
Page 22 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Flags  
The timing specifications provided below apply to the FLAG3–0  
and DAI_P20–1 pins, the parallel port, and the serial peripheral  
interface (SPI). See Table 6, “Pin Descriptions,” on Page 11 for  
more information on flag use.  
Table 19. Flags  
Parameter  
Timing Requirement  
Min  
Unit  
ns  
tFIPW  
Switching Characteristic  
tFOPW FLAG3–0 OUT Pulse Width  
FLAG3–0 IN Pulse Width  
2 × tPCLK + 3  
2 × tPCLK – 1  
ns  
DAI_P20–1  
(FLAG3–0  
(AD15–0)  
)
IN  
tFIPW  
DAI_P20–1  
(FLAG3–0  
)
OUT  
(AD15–0)  
tFOPW  
Figure 16. Flags  
Rev. F  
|
Page 23 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Memory Read—Parallel Port  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) when the processor is  
accessing external memory space.  
Table 20. 8-Bit Memory Read Cycle  
K and B Grade  
Y Grade  
Max  
Parameter  
Min  
Max  
Min  
Unit  
Timing Requirements  
tDRS  
tDRH  
tDAD  
AD7–0 Data Setup Before RD High  
3.3  
0
4.5  
0
ns  
ns  
AD7–0 Data Hold After RD High  
AD15–8 Address to AD7–0 Data Valid  
D + tPCLK – 5.0  
D + tPCLK – 5.0 ns  
Switching Characteristics  
tALEW ALE Pulse Width  
2 × tPCLK – 2.0  
2 × tPCLK – 2.0  
tPCLK – 2.5  
ns  
ns  
ns  
1
tADAS  
tRRH  
AD15–0 Address Setup Before ALE Deasserted tPCLK – 2.5  
Delay Between RD Rising Edge to Next  
Falling Edge  
H + tPCLK – 1.4  
H + tPCLK – 1.4  
tALERW  
tRWALE  
ALE Deasserted to Read Asserted  
Read Deasserted to ALE Asserted  
AD15–0 Address Hold After ALE Deasserted  
ALE Deasserted to AD7–0 Address in High-Z  
RD Pulse Width  
2 × tPCLK – 3.8  
F + H + 0.5  
tPCLK – 2.3  
tPCLK  
2 × tPCLK – 3.8  
F + H + 0.5  
tPCLK – 2.3  
tPCLK  
ns  
ns  
ns  
1
tADAH  
tALEHZ  
tRW  
1
tPCLK + 3.0  
tPCLK + 3.8  
ns  
ns  
ns  
ns  
ns  
D – 2.0  
D – 2.0  
tRDDRV  
tADRH  
tDAWH  
AD7–0 ALE Address Drive After Read High  
AD15–8 Address Hold After RD High  
AD15–8 Address to RD High  
F + H + tPCLK – 2.3  
H
F + H + tPCLK – 2.3  
H
D + tPCLK – 4.0  
D + tPCLK – 4.0  
D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK  
H = tPCLK (if a hold cycle is specified, else H = 0)  
F = 7 × tPCLK (if FLASH_MODE is set, else F = 0)  
1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low.  
tRWALE  
tALEW  
tALERW  
ALE  
tRRH  
tRW  
RD  
WR  
tRDDRV  
tDAWH  
tADAS  
tADAH  
tADRH  
VALID  
AD158  
VALID ADDRESS  
VALID ADDRESS  
VALID ADDRESS  
VALID ADDRESS  
ADDRESS  
tDAD  
tDRS tDRH  
VALID  
VALID  
DATA  
VALID  
DATA  
AD7–0  
ADDRESS  
tALEHZ  
NOTE: MEMORY READS ALWAYS OCCUR IN GROUPS OF FOUR BETWEEN ALE CYCLES. THIS FIGURE SHOWS ONLY  
TWO MEMORY READS TO PROVIDE THE NECESSARY TIMING INFORMATION.  
Figure 17. Read Cycle for 8-Bit Memory Timing  
Rev. F  
|
Page 24 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 21. 16-Bit Memory Read Cycle  
K and B Grade  
Max  
Y Grade  
Parameter  
Min  
Min  
Max  
Unit  
Timing Requirements  
tDRS  
tDRH  
AD15–0 Data Setup Before RD High  
AD15–0 Data Hold After RD High  
3.3  
0
4.5  
0
ns  
ns  
Switching Characteristics  
tALEW ALE Pulse Width  
2 × tPCLK – 2.0  
2 × tPCLK – 2.0  
tPCLK – 2.5  
ns  
ns  
ns  
ns  
1
tADAS  
AD15–0 Address Setup Before ALE Deasserted tPCLK – 2.5  
tALERW  
ALE Deasserted to Read Asserted  
2 × tPCLK – 3.8  
H + tPCLK – 1.4  
2 × tPCLK – 3.8  
H + tPCLK – 1.4  
2
tRRH  
Delay Between RD Rising Edge to Next Falling  
Edge  
tRWALE  
tRDDRV  
Read Deasserted to ALE Asserted  
F + H + 0.5  
F + H + 0.5  
ns  
ns  
ns  
ns  
ns  
ALE Address Drive After Read High  
AD15–0 Address Hold After ALE Deasserted  
F + H + tPCLK – 2.3  
tPCLK – 2.3  
F + H + tPCLK – 2.3  
tPCLK – 2.3  
1
tADAH  
tALEHZ  
tRW  
ALE Deasserted to Address/Data15–0 in High-Z tPCLK  
RD Pulse Width D – 2.0  
tPCLK + 3.0 tPCLK  
D – 2.0  
tPCLK + 3.8  
1
D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK  
H = tPCLK (if a hold cycle is specified, else H = 0)  
F = 7 × tPCLK (if FLASH_MODE is set, else F = 0)  
1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low.  
2 This parameter is only available when in EMPP = 0 mode.  
tRWALE  
tALEW  
tALERW  
ALE  
tRRH  
tRW  
RD  
WR  
tRDDRV  
tALEHZ  
tADAH  
tDRS  
tDRH  
tADAS  
VALID  
AD15–0  
VALID ADDRESS  
VALID DATA  
VALID DATA  
ADDRESS  
NOTE: FOR 16-BIT MEMORY READS, WHEN EMPP ϶ 0, ONLY ONE RD PULSE OCCURS BETWEEN ALE CYCLES.  
WHEN EMPP = 0, MULTIPLE RD PULSES OCCUR BETWEEN ALE CYCLES. FOR COMPLETE INFORMATION,  
SEE THE ADSP-2136x SHARC PROCESSOR HARDWARE REFERENCE.  
Figure 18. Read Cycle for 16-Bit Memory Timing  
Rev. F  
|
Page 25 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Memory Write—Parallel Port  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) when the processor is  
accessing external memory space.  
Table 22. 8-Bit Memory Write Cycle  
K and B Grade  
Y Grade  
Parameter  
Min  
Min  
Unit  
Switching Characteristics  
tALEW  
ALE Pulse Width  
2 × tPCLK – 2.0  
tPCLK – 2.8  
2 × tPCLK – 2.0  
tPCLK – 2.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tADAS  
tALERW  
tRWALE  
tWRH  
AD15–0 Address Setup Before ALE Deasserted  
ALE Deasserted to Write Asserted  
Write Deasserted to ALE Asserted  
Delay Between WR Rising Edge to Next WR Falling Edge  
AD15–0 Address Hold After ALE Deasserted  
WR Pulse Width  
2 × tPCLK – 3.8  
H + 0.5  
2 × tPCLK – 3.8  
H + 0.5  
F + H + tPCLK – 2.3  
tPCLK – 0.5  
F + H + tPCLK – 2.3  
tPCLK – 0.5  
1
tADAH  
tWW  
D – F – 2.0  
tPCLK – 2.8  
D – F – 2.0  
tPCLK – 3.5  
tADWL  
tADWH  
tDWS  
AD15–8 Address to WR Low  
AD15–8 Address Hold After WR High  
AD7–0 Data Setup Before WR High  
AD7–0 Data Hold After WR High  
AD15–8 Address to WR High  
H
H
D – F + tPCLK – 4.0  
H
D – F + tPCLK – 4.0  
H
tDWH  
tDAWH  
D – F + tPCLK – 4.0  
D – F + tPCLK – 4.0  
D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK  
H = tPCLK (if a hold cycle is specified, else H = 0)  
.
F = 7 × tPCLK (if FLASH_MODE is set, else F = 0). If FLASH_MODE is set, D must be 9 × tPCLK  
.
1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low.  
tALERW  
tALEW  
ALE  
tRWALE  
tWW  
WR  
tWRH  
tADWL  
tDAWH  
RD  
tADAS  
tADAH  
tADWH  
VALID  
ADDRESS  
AD15  
AD7  
-8  
VALID ADDRESS  
VALID ADDRESS  
tDWH  
tDWS  
VALID  
ADDRESS  
VALID DATA  
VALID DATA  
-0  
NOTE: MEMORY WRITES ALWAYS OCCUR IN GROUPS OF FOUR BETWEEN ALE CYCLES. THIS FIGURE  
SHOWS ONLY TWO MEMORY WRITES TO PROVIDE THE NECESSARY TIMING INFORMATION.  
Figure 19. Write Cycle for 8-Bit Memory Timing  
Rev. F  
|
Page 26 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 23. 16-Bit Memory Write Cycle  
K and B Grade  
Y Grade  
Parameter  
Min  
Min  
Unit  
Switching Characteristics  
tALEW  
ALE Pulse Width  
2 × tPCLK – 2.0  
tPCLK – 2.5  
2 × tPCLK – 2.0  
tPCLK – 2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tADAS  
AD15–0 Address Setup Before ALE Deasserted  
ALE Deasserted to Write Asserted  
Write Deasserted to ALE Asserted  
Delay Between WR Rising Edge to Next WR Falling Edge  
AD15–0 Address Hold After ALE Deasserted  
WR Pulse Width  
tALERW  
2 × tPCLK – 3.8  
H + 0.5  
2 × tPCLK – 3.8  
H + 0.5  
tRWALE  
2
tWRH  
F + H + tPCLK – 2.3  
tPCLK – 2.3  
F + H + tPCLK – 2.3  
tPCLK – 2.3  
1
tADAH  
tWW  
tDWS  
tDWH  
D – F – 2.0  
D – F + tPCLK – 4.0  
H
D – F – 2.0  
D – F + tPCLK – 4.0  
H
AD15–0 Data Setup Before WR High  
AD15–0 Data Hold After WR High  
D = (the value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK  
H = tPCLK (if a hold cycle is specified, else H = 0)  
F = 7 × tPCLK (if FLASH_MODE is set, else F = 0). If FLASH_MODE is set, D must be 9 × tPCLK  
PCLK = (peripheral) clock period = 2 × tCCLK  
.
.
t
1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low.  
2 This parameter is only available when in EMPP = 0 mode.  
tRWALE  
tALEW  
tALERW  
ALE  
tRRH  
tRW  
RD  
WR  
tRDDRV  
tALEHZ  
tADAH  
tDRS  
tDRH  
tADAS  
VALID  
AD15–0  
VALID ADDRESS  
VALID DATA  
VALID DATA  
ADDRESS  
NOTE: FOR 16-BIT MEMORY READS, WHEN EMPP ϶ 0, ONLY ONE RD PULSE OCCURS BETWEEN ALE CYCLES.  
WHEN EMPP = 0, MULTIPLE RD PULSES OCCUR BETWEEN ALE CYCLES. FOR COMPLETE INFORMATION,  
SEE THE ADSP-2136x SHARC PROCESSOR HARDWARE REFERENCE.  
Figure 20. Write Cycle for 16-Bit Memory Timing  
Rev. F  
|
Page 27 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Serial Ports  
To determine whether communication is possible between two  
devices at clock speed n, the following specifications must be  
confirmed: 1) frame sync (FS) delay and frame sync setup and  
hold, 2) data delay and data setup and hold, and 3) serial clock  
(SCLK) width.  
Serial port signals are routed to the DAI_P20–1 pins using the  
SRU. Therefore, the timing specifications provided below are  
valid at the DAI_P20–1 pins.  
Table 24. Serial Ports—External Clock  
K and B Grade  
Y Grade  
Max  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSE  
Frame Sync Setup Before SCLK  
(Externally Generated Frame Sync in Either Transmit or Receive Mode)  
2.5  
ns  
1
1
tHFSE  
Frame Sync Hold After SCLK  
(Externally Generated Frame Sync in Either Transmit or Receive Mode)  
2.5  
2.5  
2.5  
ns  
ns  
ns  
ns  
tSDRE  
Receive Data Setup Before Receive SCLK  
Receive Data Hold After SCLK  
SCLK Width  
1
tHDRE  
tSCLKW  
(tPCLK ×4)÷  
2 – 0.5  
tSCLK  
SCLK Period  
tPCLK × 4  
ns  
ns  
Switching Characteristics  
2
tDFSE  
Frame Sync Delay After SCLK  
(Internally Generated Frame Sync in Either Transmit or Receive Mode)  
9.5  
9.5  
11  
11  
2
tHOFSE  
Frame Sync Hold After SCLK  
(Internally Generated Frame Sync in Either Transmit or Receive Mode)  
2
2
ns  
ns  
ns  
2
2
tDDTE  
tHDTE  
Transmit Data Delay After Transmit SCLK  
Transmit Data Hold After Transmit SCLK  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 25. Serial Ports—Internal Clock  
K and B Grade  
Y Grade  
Parameter  
Min  
Max  
Max  
Unit  
Timing Requirements  
1
tSFSI  
Frame Sync Setup Before SCLK  
(Externally Generated Frame Sync in Either Transmit or Receive Mode)  
7
ns  
1
tHFSI  
Frame Sync Hold After SCLK  
(Externally Generated Frame Sync in Either Transmit or Receive Mode)  
2.5  
7
ns  
ns  
ns  
1
tSDRI  
Receive Data Setup Before SCLK  
Receive Data Hold After SCLK  
1
tHDRI  
2.5  
Switching Characteristics  
2
tDFSI  
Frame Sync Delay After SCLK (Internally Generated Frame Sync in Transmit Mode)  
3
8
3
3.5  
9.5  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tHOFSI  
Frame Sync Hold After SCLK (Internally Generated Frame Sync in Transmit Mode) –1.0  
Frame Sync Delay After SCLK (Internally Generated Frame Sync in Receive Mode)  
2
tDFSIR  
2
tHOFSIR  
Frame Sync Hold After SCLK (Internally Generated Frame Sync in Receive Mode)  
Transmit Data Delay After SCLK  
–1.0  
2
tDDTI  
2
tHDTI  
Transmit Data Hold After SCLK  
–1.0  
tSCLKIW  
Transmit or Receive SCLK Width  
2XtPCLK – 2 2XtPCLK + 2 2XtPCLK + 2  
1 Referenced to the sample edge.  
2 Referenced to drive edge.  
Rev. F  
|
Page 28 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 26. Serial Ports—Enable and Three-State  
K and B Grade  
Max  
Y Grade  
Parameter  
Switching Characteristics  
Min  
2
Max  
Unit  
1
tDDTEN  
Data Enable from External Transmit SCLK  
Data Disable from External Transmit SCLK  
Data Enable from Internal Transmit SCLK  
ns  
ns  
ns  
1
tDDTTE  
7
8.5  
1
tDDTIN  
–1  
1 Referenced to drive edge.  
Table 27. Serial Ports—External Late Frame Sync  
K and B Grade  
Max  
Y Grade  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
1
tDDTLFSE  
Data Delay from Late External Transmit Frame Sync  
or External Receive FS with MCE = 1, MFD = 0  
9
10.5  
ns  
ns  
1
tDDTENFS  
Data Enable for MCE = 1, MFD = 0  
0.5  
1 The tDDTLFSE and tDDTENFS parameters apply to left-justified sample pair as well as DSP serial mode, and MCE = 1, MFD = 0.  
Rev. F  
|
Page 29 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FRAME SYNC)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TRANSMIT FS  
DRIVE  
SAMPLE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FRAME SYNC)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
NOTES: THIS FIGURE REFLECTS CHANGES MADE TO SUPPORT LEFT-JUSTIFIED SAMPLE PAIR MODE. SERIAL PORT SIGNALS  
(SCLK, FS, DATA CHANNEL A/B) ARE ROUTED TO THE DAI_P20–1 PINS USING THE SRU. THE TIMING SPECIFICATIONS  
PROVIDED ARE VALID AT THE DAI_P20–1 PINS. THE CHARACTERIZED SPORT AC TIMINGS ARE APPLICABLE WHEN  
INTERNAL CLOCKS AND FRAMES ARE LOOPED BACK FROM THE PIN, NOT ROUTED DIRECTLY THROUGH THE SRU.  
Figure 21. External Late Frame Sync  
Rev. F  
|
Page 30 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
DATA RECEIVEINTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA RECEIVEEXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSIR  
tDFSE  
tHOFSIR  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FRAME SYNC)  
DAI_P20–1  
(FRAME SYNC)  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
NOTE: EITHER THE RISING EDGE OR THE FALLING EDGE OF SCLK (EXTERNAL OR INTERNAL) CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMITINTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMITEXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(FRAME SYNC)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
NOTE: EITHER THE RISING EDGE OR THE FALLING EDGE OF SCLK (EXTERNAL OR INTERNAL) CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE EDGE  
DRIVE EDGE  
DAI_P20–1  
(SCLK, EXT)  
SCLK  
tDDTEN  
tDDTTE  
DAI_P20–1  
(FRAME SYNC)  
DRIVE EDGE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
tDDTIN  
Figure 22. Serial Ports  
Rev. F  
|
Page 31 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Input Data Port (IDP)  
The timing requirements for the IDP are given in Table 28. IDP  
signals are routed to the DAI_P20–1 pins using the SRU. There-  
fore, the timing specifications provided below are valid at the  
DAI_P20–1 pins.  
Table 28. IDP  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Clock Rising Edge  
Frame Sync Hold After Clock Rising Edge  
Data Setup Before Clock Rising Edge  
Data Hold After Clock Rising Edge  
Clock Width  
3
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
3
1
tSISD  
3
1
tSIHD  
3
tIDPCLKW  
tIDPCLK  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
1
The data, clock, and frame sync signals can come from any of the DAI pins. Clock and frame sync can also come via the PCGs or SPORTs. The PCG’s input can be either  
CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tIPDCLK  
DAI_P20–1  
(SERIAL CLOCK)  
tIPDCLKW  
tSISFS  
tSIHFS  
DAI_P20–1  
(FRAME SYNC)  
tSISD  
tSIHD  
DAI_P20–1  
(DATA)  
Figure 23. IDP Master Timing  
Rev. F  
|
Page 32 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Note that the most significant 16 bits of external 20-bit PDAP  
data can be provided through either the parallel port AD15–0 or  
the DAI_P20–5 pins. The remaining 4 bits can only be sourced  
through DAI_P4–1. The timing below is valid at the  
DAI_P20–1 pins or at the AD15–0 pins.  
Parallel Data Acquisition Port (PDAP)  
The timing requirements for the PDAP are provided in  
Table 29. PDAP is the parallel mode operation of Channel 0 of  
the IDP. For details on the operation of the IDP, refer to the  
ADSP-2136x SHARC Processor Hardware Reference, the chapter  
“Input Data Port.”  
Table 29. Parallel Data Acquisition Port (PDAP)  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSPCLKEN  
PDAP_CLKEN Setup Before PDAP_CLK Sample Edge  
PDAP_CLKEN Hold After PDAP_CLK Sample Edge  
PDAP_DAT Setup Before SCLK PDAP_CLK Sample Edge  
PDAP_DAT Hold After SCLK PDAP_CLK Sample Edge  
Clock Width  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
1
tHPCLKEN  
2.5  
1
tPDSD  
3.0  
1
tPDHD  
2.5  
tPDCLKW  
tPDCLK  
(tPCLK × 4) ÷ 2 – 3  
tPCLK × 4  
Clock Period  
Switching Characteristics  
tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word  
tPDSTRB PDAP Strobe Pulse Width  
2 × tPCLK – 1  
ns  
ns  
2 × tPCLK – 1.5  
1 Data source pins are AD15–0 and DAI_P4–1, or DAI pins. Source pins for serial clock and frame sync are DAI pins.  
SAMPLE EDGE  
tPDCLK  
tPDCLKW  
DAI_P20–1  
(PDAP_CLK)  
tSPCLKEN  
tHPCLKEN  
DAI_P20–1  
(PDAP_CLKEN)  
tPDSD  
tPDHD  
DATA  
DAI_P20–1  
(PDAP_STROBE)  
tPDHLDD  
tPDSTRB  
Figure 24. PDAP Timing  
Rev. F  
|
Page 33 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Pulse-Width Modulation Generators  
Table 30. PWM Timing1  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tPWMW  
PWM Output Pulse Width  
tPCLK – 2  
(216 – 2) × tPCLK – 2  
(216 – 1) × tPCLK  
ns  
ns  
tPWMP  
PWM Output Period  
2 × tPCLK – 1.5  
1 Note that the PWM output signals are shared on the parallel port bus (AD15-0 pins).  
tPWMW  
PWM  
OUTPUTS  
tPWMP  
Figure 25. PWM Timing  
Sample Rate Converter—Serial Input Port  
The SRC input signals are routed from the DAI_P20–1 pins  
using the SRU. Therefore, the timing specifications provided in  
Table 31 are valid at the DAI_P20–1 pins. This feature is not  
available on the ADSP-21363 models.  
Table 31. SRC, Serial Input Port  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSRCSFS  
Frame Sync Setup Before Serial Clock Rising Edge  
Frame Sync Hold After Serial Clock Rising Edge  
SDATA Setup Before Serial Clock Rising Edge  
SDATA Hold After Serial Clock Rising Edge  
Clock Width  
3
ns  
ns  
ns  
ns  
ns  
ns  
1
tSRCHFS  
3
1
tSRCSD  
3
1
tSRCHD  
tSRCCLKW  
tSRCCLK  
3
36  
80  
Clock Period  
1
The data, serial clock, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via the PCGs or SPORTs. The PCG’s  
input can be either CLKIN or any of the DAI pins.  
Rev. F  
|
Page 34 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SAMPLE EDGE  
tSRCCLK  
DAI_P20–1  
(SCLK)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI_P20–1  
(FS)  
tSRCSD  
tSRCHD  
DAI_P20–1  
(SDATA)  
Figure 26. SRC Serial Input Port Timing  
Rev. F  
|
Page 35 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
specification with regard to serial clock. Note that the serial  
clock rising edge is the sampling edge and the falling edge is the  
drive edge.  
Sample Rate Converter—Serial Output Port  
For the serial output port, the frame-sync is an input and should  
meet setup and hold times with regard to the serial clock on the  
output port. The serial data output has a hold time and delay  
Table 32. SRC, Serial Output Port  
K and B Grade  
Max  
Y Grade  
Max  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSRCSFS  
Frame Sync Setup Before Serial Clock Rising Edge  
Frame Sync Hold After Serial Clock Rising Edge  
3
3
ns  
ns  
1
tSRCHFS  
Switching Characteristics  
1
tSRCTDD  
Transmit Data Delay After Serial Clock Falling Edge  
Transmit Data Hold After Serial Clock Falling Edge  
10.5  
12.5  
ns  
ns  
1
tSRCTDH  
2
1
The data, serial clock, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync can also come via PCG or SPORTs. PCG’s input can be  
either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
DAI_P20–1  
(SERIAL CLOCK)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI_P20–1  
(FRAME SYNC)  
tSRCTDD  
DAI_P20–1  
(DATA)  
tSRCTDH  
Figure 27. SRC Serial Output Port Timing  
Rev. F  
|
Page 36 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
output mode) from an LRCLK transition, so that when there are  
64 serial clock periods per LRCLK period, the LSB of the data  
S/PDIF Transmitter  
Serial data input to the S/PDIF transmitter can be formatted as  
left-justified, I2S, or right-justified with word widths of 16, 18,  
20, or 24 bits. The following sections provide timing for the  
transmitter. This feature is not available on the  
ADSP-21363 models.  
will be right-justified to the next LRCLK transition.  
Figure 29 shows the default I2S-justified mode. LRCLK is low  
for the left channel and high for the right channel. Data is valid  
on the rising edge of serial clock. The MSB is left-justified to an  
LRCLK transition but with a single serial clock period delay.  
Figure 30 shows the left-justified mode. LRCLK is high for the  
left channel and low for the right channel. Data is valid on the  
rising edge of serial clock. The MSB is left-justified to an LRCLK  
transition with no MSB delay.  
S/PDIF Transmitter—Serial Input Waveforms  
Figure 28 shows the right-justified mode. LRCLK is high for the  
left channel and low for the right channel. Data is valid on the  
rising edge of serial clock. The MSB is delayed 12-bit clock peri-  
ods (in 20-bit output mode) or 16-bit clock periods (in 16-bit  
DAI_P20–1  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DAI_P20–1  
SCLK  
MSB 2  
LSB + 1  
LSB  
MSB 2  
LSB + 1  
LSB  
DAI_P20–1  
SDATA  
LSB  
MSB  
MSB – 1  
MSB  
MSB – 1  
LSB + 2  
LSB + 2  
Figure 28. Right -Justified Mode  
RIGHT CHANNEL  
DAI_P20–1  
LRCLK  
LEFT CHANNEL  
DAI_P20–1  
SCLK  
MSB 2  
LSB + 1  
LSB  
MSB 2  
LSB + 1  
LSB  
DAI_P20–1  
SDATA  
MSB  
MSB – 1  
MSB  
MSB – 1  
MSB  
LSB + 2  
LSB + 2  
Figure 29. I2S-Justified Mode  
DAI_P20–1  
RIGHT CHANNEL  
LSB + 1  
LEFT CHANNEL  
LRCLK  
DAI_P20–1  
SCLK  
MSB 2  
LSB + 1  
LSB  
MSB 2  
DAI_P20–1  
SDATA  
MSB  
MSB – 1  
MSB  
MSB – 1  
LSB  
MSB  
MSB + 1  
LSB + 2  
LSB + 2  
Figure 30. Left-Justified Mode  
Rev. F  
|
Page 37 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
S/PDIF Transmitter Input Data Timing  
The timing requirements for the input port are given in  
Table 33. Input signals are routed to the DAI_P20–1 pins using  
the SRU. Therefore, the timing specifications provided below  
are valid at the DAI_P20–1 pins.  
Table 33. S/PDIF Transmitter Input Data Timing  
K and B Grade  
Y Grade  
Parameter  
Min  
Min  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Serial Clock Rising Edge  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Clock Width  
3
3
1
tSISD  
tSIHD  
3
3
1
3
3
tSISCLKW  
tSISCLK  
tSITXCLKW  
tSITXCLK  
36  
80  
9
36  
80  
9.5  
20  
Clock Period  
Transmit Clock Width  
Transmit Clock Period  
20  
1
The data, serial clock, and frame sync signals can come from any of the DAI pins. The serial clock, and frame sync signals can also come via PCG or SPORTs. PCG’s input  
can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSITXCLKW  
tSITXCLK  
DAI_P20–1  
(TxCLK)  
tSISCLKW  
DAI_P20–1  
(SERIAL CLOCK)  
tSISCLK  
tSISFS  
tSIHFS  
DAI_P20–1  
(FRAME SYNC)  
tSISD  
tSIHD  
DAI_P20–1  
(DATA)  
Figure 31. S/PDIF Transmitter Input Timing  
Oversampling Clock (TXCLK) Switching Characteristics  
S/PDIF transmitter has an oversampling clock. This TXCLK  
input is divided down to generate the biphase clock.  
Table 34. Oversampling Clock (TXCLK) Switching Characteristics  
Parameter  
Max  
Unit  
MHz  
MHz  
kHz  
TXCLK Frequency for TXCLK = 384 × FS  
TXCLK Frequency for TXCLK = 256 × FS  
Frame Rate (FS)  
Oversampling Ratio × FS <= 1/tSITXCLK  
49.2  
192.0  
Rev. F  
|
Page 38 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
S/PDIF Receiver  
The following section describes timing as it relates to the  
S/PDIF receiver. This feature is not available on the  
ADSP-21363 processors.  
Internal Digital PLL Mode  
In the internal digital phase-locked loop mode the internal PLL  
(digital PLL) generates the 512 × FS clock.  
Table 35. S/PDIF Receiver Output Timing (Internal Digital PLL Mode)  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
LRCLK Delay After Serial Clock  
LRCLK Hold After Serial Clock  
5
5
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
–2  
Transmit Data Delay After Serial Clock  
Transmit Data Hold After Serial Clock  
Transmit Serial Clock Width  
tHDTI  
–2  
38  
1
tSCLKIW  
1 Serial clock frequency is 64 × frame sync where FS = the frequency of LRCLK.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
DAI_P20–1  
(SERIAL CLOCK)  
tDFSI  
tHOFSI  
DAI_P20–1  
(FRAME SYNC)  
tDDTI  
tHDTI  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
Figure 32. S/PDIF Receiver Internal Digital PLL Mode Timing  
Rev. F  
|
Page 39 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SPI Interface—Master  
The processor contains two SPI ports. The primary has dedi-  
cated pins and the secondary is available through the DAI. The  
timing provided in Table 36 and Table 37 applies to both.  
Table 36. SPI Interface Protocol—Master Switching and Timing Specifications  
K and B Grade  
Y Grade  
Parameter  
Min  
Max Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tSSPIDM  
tHSPIDM  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
5.2  
8.2  
2
6.2  
9.5  
2
ns  
ns  
ns  
Data Input Valid to SPICLK Edge (Data Input Setup Time) (SPI2)  
SPICLK Last Sampling Edge to Data Input Not Valid  
Switching Characteristics  
tSPICLKM  
tSPICHM  
tSPICLM  
tDDSPIDM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tSDSCIM  
tHDSM  
Serial Clock Cycle  
8 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
8 × tPCLK – 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
4 × tPCLK – 2  
4 × tPCLK – 2  
Serial Clock Low Period  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Valid (Data Out Delay Time) (SPI2)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
FLAG3–0IN (SPI Device Select) Low to First SPICLK Edge  
FLAG3–0IN (SPI Device Select) Low to First SPICLK Edge (SPI2)  
Last SPICLK Edge to FLAG3–0IN High  
3.0  
8.0  
3.0  
9.5  
4 × tPCLK – 2  
4 × tPCLK – 2.5  
4 × tPCLK – 2.5  
4 × tPCLK – 2  
4 × tPCLK – 1  
4 × tPCLK – 2  
4 × tPCLK – 3.0  
4 × tPCLK – 3.0  
4 × tPCLK – 2  
4 × tPCLK – 1  
tSPITDM  
Sequential Transfer Delay  
FLAG3–0  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLKM  
tHDSM  
tSPITDM  
SPICLK  
(CP = 0)  
(OUTPUT)  
tSPICLM  
tSPICHM  
SPICLK  
(CP = 1)  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
MOSI  
MSB  
LSB  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
tSSPIDM  
CPHASE = 1  
tHSPIDM  
MISO  
MSB  
VALID  
LSB VALID  
(INPUT)  
tDDSPIDM  
tHDSPIDM  
LSB  
MOSI  
MSB  
tHSPIDM  
(OUTPUT)  
tSSPIDM  
CPHASE = 0  
MISO  
MSB VALID  
LSB VALID  
(INPUT)  
Figure 33. SPI Master Timing  
Rev. F  
|
Page 40 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SPI Interface—Slave  
Table 37. SPI Interface Protocol—Slave Switching and Timing Specifications  
K and B Grade  
Max  
Y Grade  
Max  
Parameter  
Min  
Unit  
Timing Requirements  
tSPICLKS  
tSPICHS  
tSPICLS  
tSDSCO  
Serial Clock Cycle  
4 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK – 2  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPIDS Assertion to First SPICLK Edge  
CPHASE = 0  
CPHASE = 1  
2 × tPCLK  
2 × tPCLK  
ns  
ns  
tHDS  
Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
SPIDS Deassertion Pulse Width (CPHASE = 0)  
2 × tPCLK  
ns  
ns  
ns  
ns  
tSSPIDS  
tHSPIDS  
tSDPPW  
2
2
2 × tPCLK  
Switching Characteristics  
tDSOE SPIDS Assertion to Data Out Active  
0
0
0
0
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tDSOE  
tDSDHI  
SPIDS Assertion to Data Out Active (SPI2)  
8
9
SPIDS Deassertion to Data High Impedance  
SPIDS Deassertion to Data High Impedance (SPI2)  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
5
5.5  
10  
11.0  
1
tDSDHI  
8.6  
9.5  
tDDSPIDS  
tHDSPIDS  
tDSOV  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time) 2 × tPCLK  
SPIDS Assertion to Data Out Valid (CPHASE = 0)  
5 × tPCLK  
5 × tPCLK  
1 The timing for these parameters applies when the SPI is routed through the signal routing unit. For more information, refer to the ADSP-2136x SHARC Processor Hardware  
Reference, “Serial Peripheral Interface Port” chapter.  
Rev. F  
|
Page 41 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SPIDS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLKS  
tHDS  
tSDPPW  
SPICLK  
(CP = 0)  
(INPUT)  
tSPICLS  
tSDSCO  
tSPICHS  
SPICLK  
(CP = 1)  
(INPUT)  
tDSDHI  
tHDSPIDS  
tDDSPIDS  
tDSOE  
tDDSPIDS  
MISO  
MSB  
LSB  
(OUTPUT)  
tSSPIDS tHSPIDS  
CPHASE = 1  
tSSPIDS  
MOSI  
MSB VALID  
LSB VALID  
(INPUT)  
tHDSPIDS  
tDDSPIDS  
tDSDHI  
MISO  
MSB  
LSB  
(OUTPUT)  
tDSOV  
tHSPIDS  
CPHASE = 0  
tSSPIDS  
MOSI  
MSB VALID  
LSB VALID  
(INPUT)  
Figure 34. SPI Slave Timing  
Rev. F  
|
Page 42 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
JTAG Test Access Port and Emulation  
Table 38. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
tCK  
5
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width  
6
1
tSSYS  
7
1
tHSYS  
tTRSTW  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
18  
4tCK  
7
ns  
ns  
2
tDSYS  
tCK ÷ 2 + 7  
1 System Inputs = ADDR15–0, SPIDS, CLK_CFG1–0, RESET, BOOT_CFG1–0, MISO, MOSI, SPICLK, DAI_Px, and FLAG3–0.  
2 System Outputs = MISO, MOSI, SPICLK, DAI_Px, ADDR15–0, RD, WR, FLAG3–0, EMU, and ALE.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 35. IEEE 1149.1 JTAG Test Access Port  
Rev. F  
|
Page 43 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
OUTPUT DRIVE CURRENTS  
CAPACITIVE LOADING  
Figure 36 shows typical I-V characteristics for the output driv-  
ers of the processor. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 37). Figure 41 shows graphically  
how output delays and holds vary with load capacitance. The  
graphs of Figure 39, Figure 40, and Figure 41 may not be linear  
outside the ranges shown for Typical Output Delay versus Load  
Capacitance and Typical Output Rise Time (20% to 80%,  
V = Min) versus Load Capacitance.  
40  
V
OH  
30  
3.3V, +25°C  
3.47V, -45°C  
20  
12  
10  
10  
0
3.11V, +125°C  
RISE  
y = 0.0467x + 1.6323  
FALL  
-
10  
8
3.11V, +125°C  
-
20  
3.3V, +25°C  
3.5  
6
V
-
-
30  
OL  
0.5  
3.47V,  
-
45°C  
4
40  
y = 0.045x + 1.524  
0
1.0  
1.5  
2.0  
2.5  
3.0  
SWEEP (V  
) VOLTAGE (V)  
DDEXT  
2
0
Figure 36. ADSP-2136x Typical Drive  
50  
100  
150  
200  
250  
0
TEST CONDITIONS  
LOAD CAPACITANCE (pF)  
The ac signal specifications (timing parameters) appear in  
Table 12 on Page 19 through Table 38 on Page 43. These include  
output disable time, output enable time, and capacitive loading.  
The timing specifications for the SHARC apply for the voltage  
reference levels in Figure 37.  
Timing is measured on signals when they cross the 1.5 V level as  
described in Figure 38. All delays (in nanoseconds) are mea-  
sured between the point that the first signal reaches 1.5 V and  
the point that the second signal reaches 1.5 V.  
Figure 39. Typical Output Rise/Fall Time  
(20% to 80%, VDDEXT = Max)  
12  
10  
RISE  
y = 0.049x + 1.5105  
FALL  
8
6
TO  
OUTPUT  
PIN  
ꢀꢁȍ  
V
LOAD  
y = 0.0482x + 1.4604  
30pF  
4
2
Figure 37. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
INPUT  
OR  
1.5V  
1.5V  
OUTPUT  
Figure 40. Typical Output Rise/Fall Time  
(20% to 80%, VDDEXT = Min)  
Figure 38. Voltage Reference Levels for AC Measurements  
Rev. F  
|
Page 44 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Values of θJC are provided for package comparison and PCB  
design considerations when an exposed pad is required. Note  
that the thermal characteristics values provided in Table 39  
through Table 41 are modeled values.  
10  
8
y = 0.0488x  
-
1.5923  
6
Table 39. Thermal Characteristics for BGA (No Thermal vias  
in PCB)  
4
Parameter  
θJA  
Condition  
Typical  
25.40  
21.90  
20.90  
5.07  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
2
0
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
θJMA  
θJMA  
-
-
2
4
θJC  
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.140  
0.330  
0.410  
0
50  
100  
150  
200  
ΨJMT  
ΨJMT  
LOAD CAPACITANCE (pF)  
Figure 41. Typical Output Delay or Hold versus Load Capacitance  
(at Ambient Temperature)  
Table 40. Thermal Characteristics for BGA (Thermal vias in  
PCB)  
Parameter  
θJA  
Condition  
Typical  
23.40  
20.00  
19.20  
5.00  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
THERMAL CHARACTERISTICS  
The processor is rated for performance over the temperature  
range specified in Operating Conditions on Page 14.  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
θJMA  
θJMA  
Table 39 through Table 41 airflow measurements comply with  
JEDEC standards JESD51-2 and JESD51-6 and the junction-to-  
board measurement complies with JESD51-8. Test board and  
thermal via design comply with JEDEC standards JESD51-9  
(BGA) and JESD51-5 (LQFP_EP). The junction-to-case mea-  
surement complies with MIL-STD-883. All measurements use a  
2S2P JEDEC test board.  
Industrial applications using the BGA package require thermal  
vias, to an embedded ground plane, in the PCB. Refer to JEDEC  
standard JESD51-9 for printed circuit board thermal ball land  
and thermal via design information.  
Industrial applications using the LQFP_EP package require  
thermal trace squares and thermal vias, to an embedded ground  
plane, in the PCB. Refer to JEDEC standard JESD51-5 for more  
information.  
To determine the junction temperature of the device while on  
the application PCB, use:  
θJC  
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.130  
0.300  
0.360  
ΨJMT  
ΨJMT  
Table 41. Thermal Characteristics for LQFP_EP (with  
Exposed Pad Soldered to PCB)  
Parameter  
θJA  
Condition  
Typical  
16.80  
14.20  
13.50  
7.25  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
θJMA  
θJMA  
θJC  
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.51  
ΨJMT  
ΨJMT  
0.72  
0.80  
TJ = TT + JT × PD)  
where:  
TJ = junction temperature (°C)  
TT = case temperature (°C) measured at the top center of the  
package  
Ψ
JT = junction-to-top (of package) characterization parameter  
is the typical value from Table 39 through Table 41.  
P
D = power dissipation. See Estimating Power for the  
ADSP-21362 SHARC Processors (EE-277) for more information.  
Values of θJA are provided for package comparison and PCB  
design considerations.  
Rev. F  
|
Page 45 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
144-LEAD LQFP PIN CONFIGURATIONS  
The following table shows the processor’s pin names and, when  
applicable, their default function after reset in parentheses.  
Table 42. LQFP Pin Assignments  
Pin Name  
VDDINT  
Pin No.  
1
Pin Name  
VDDINT  
GND  
RD  
Pin No.  
37  
Pin Name  
VDDEXT  
Pin No.  
73  
Pin Name  
GND  
VDDINT  
GND  
VDDINT  
GND  
VDDINT  
GND  
VDDEXT  
GND  
VDDINT  
GND  
VDDINT  
RESET  
SPIDS  
GND  
VDDINT  
SPICLK  
MISO  
MOSI  
GND  
VDDINT  
VDDEXT  
AVDD  
Pin No.  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
CLK_CFG0  
CLK_CFG1  
BOOT_CFG0  
BOOT_CFG1  
GND  
2
38  
GND  
74  
3
39  
VDDINT  
75  
4
ALE  
40  
GND  
76  
5
AD15  
AD14  
AD13  
GND  
VDDEXT  
AD12  
VDDINT  
GND  
AD11  
AD10  
AD9  
41  
DAI_P10 (SD2B)  
DAI_P11 (SD3A)  
DAI_P12 (SD3B)  
DAI_P13 (SCLK3)  
DAI_P14 (SFS3)  
DAI_P15 (SD4A)  
VDDINT  
77  
6
42  
78  
VDDEXT  
GND  
7
43  
79  
8
44  
80  
VDDINT  
9
45  
81  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
46  
82  
VDDINT  
47  
83  
GND  
48  
GND  
84  
VDDINT  
49  
GND  
85  
GND  
50  
DAI_P16 (SD4B)  
DAI_P17 (SD5A)  
DAI_P18 (SD5B)  
DAI_P19 (SCLK5)  
VDDINT  
86  
FLAG0  
FLAG1  
AD7  
51  
87  
AD8  
52  
88  
DAI_P1 (SD0A) 53  
89  
GND  
VDDINT  
GND  
54  
55  
90  
VDDINT  
GND  
91  
GND  
DAI_P2 (SD0B) 56  
DAI_P3 (SCLK0) 57  
GND  
92  
VDDEXT  
GND  
VDDEXT  
93  
GND  
58  
59  
60  
61  
62  
DAI_P20 (SFS5)  
GND  
94  
VDDINT  
VDDEXT  
95  
AD6  
VDDINT  
VDDINT  
96  
AVSS  
AD5  
GND  
FLAG2  
97  
GND  
RESETOUT  
EMU  
AD4  
DAI_P4 (SFS0)  
FLAG3  
98  
VDDINT  
DAI_P5 (SD1A) 63  
DAI_P6 (SD1B) 64  
DAI_P7 (SCLK1) 65  
VDDINT  
99  
GND  
GND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
TDO  
AD3  
VDDINT  
TDI  
AD2  
VDDINT  
66  
67  
68  
69  
70  
GND  
TRST  
TCK  
VDDEXT  
GND  
GND  
VDDINT  
VDDINT  
GND  
TMS  
AD1  
GND  
VDDINT  
GND  
CLKIN  
XTAL  
VDDEXT  
AD0  
DAI_P8 (SFS1)  
GND  
WR  
DAI_P9 (SD2A) 71  
VDDINT  
VDDINT  
VDDINT  
72  
VDDINT  
Rev. F  
|
Page 46 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
136-BALL BGA PIN CONFIGURATIONS  
The following table shows the processor’s ball names and, when  
applicable, their default function after reset in parentheses.  
Table 43. BGA Pin Assignments  
Ball Name  
CLK_CFG0  
XTAL  
TMS  
Ball No. Ball Name  
Ball No. Ball Name  
Ball No. Ball Name  
Ball No.  
D01  
D02  
D04  
D05  
D06  
D09  
D10  
D11  
D13  
D14  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
E01  
E02  
E04  
E05  
E06  
E09  
E10  
E11  
E13  
E14  
CLK_CFG1  
GND  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
F01  
F02  
F04  
F05  
F06  
F09  
F10  
F11  
F13  
F14  
BOOT_CFG1  
BOOT_CFG0  
GND  
C01  
C02  
C03  
C12  
C13  
C14  
VDDINT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDINT  
VDDEXT  
TCK  
CLKIN  
TRST  
GND  
TDI  
GND  
RESETOUT  
TDO  
AVSS  
VDDINT  
AVDD  
EMU  
VDDEXT  
MOSI  
MISO  
SPIDS  
VDDINT  
SPICLK  
RESET  
VDDINT  
GND  
GND  
GND  
GND  
GND  
VDDINT  
FLAG1  
FLAG0  
GND  
AD7  
G01  
G02  
G13  
G14  
AD6  
H01  
H02  
H13  
H14  
GND  
VDDINT  
VDDEXT  
GND  
VDDEXT  
DAI_P18 (SD5B)  
DAI_P17 (SD5A)  
GND  
GND  
DAI_P19 (SCLK5)  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
FLAG2  
DAI_P20 (SFS5)  
FLAG3  
Rev. F  
|
Page 47 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 43. BGA Pin Assignments (Continued)  
Ball Name  
AD5  
Ball No. Ball Name  
Ball No. Ball Name  
Ball No. Ball Name  
Ball No.  
M01  
J01  
AD3  
K01  
K02  
K04  
K05  
K06  
K09  
K10  
K11  
K13  
K14  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
AD2  
L01  
L02  
L04  
L05  
L06  
L09  
L10  
L11  
L13  
L14  
AD0  
AD4  
J02  
VDDINT  
AD1  
WR  
M02  
GND  
J04  
GND  
GND  
GND  
M03  
GND  
J05  
GND  
GND  
GND  
M12  
GND  
J06  
GND  
GND  
DAI_P12 (SD3B)  
DAI_P13 (SCLK3)  
M13  
GND  
J09  
GND  
GND  
M14  
GND  
J10  
GND  
GND  
GND  
J11  
GND  
GND  
VDDINT  
J13  
GND  
GND  
DAI_P16 (SD4B)  
AD15  
J14  
DAI_P15 (SD4A)  
AD14  
DAI_P14 (SFS3)  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
N14  
ALE  
AD13  
RD  
AD12  
VDDINT  
AD11  
VDDEXT  
AD10  
AD8  
AD9  
VDDINT  
DAI_P1 (SD0A)  
DAI_P3 (SCLK0)  
DAI_P5 (SD1A)  
DAI_P6 (SD1B)  
DAI_P7 (SCLK1)  
DAI_P8 (SFS1)  
DAI_P9 (SD2A)  
DAI_P11 (SD3A)  
DAI_P2 (SD0B)  
VDDEXT  
DAI_P4 (SFS0)  
VDDINT  
VDDINT  
GND  
DAI_P10 (SD2B)  
Figure 42 and Figure 43 show BGA pin assignments from the  
bottom and top, respectively.  
Note: Use the center block of ground pins to provide thermal  
pathways to your printed circuit board’s ground plane.  
Rev. F  
|
Page 48 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
M
N
P
KEY  
KEY  
V
V
A
VDD  
DDINT  
V
A
VDD  
GND  
DDINT  
GND  
A
A
I/O SIGNALS  
DDEXT  
VSS  
V
I/O SIGNALS  
DDEXT  
VSS  
Figure 42. BGA Pin Assignments (Bottom View, Summary)  
Figure 43. BGA Pin Assignments (Top View, Summary)  
Rev. F  
|
Page 49 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
PACKAGE DIMENSIONS  
The processor is available in 136-ball BGA and 144-lead  
exposed pad (LQFP_EP) packages.  
22.20  
22.00 SQ  
21.80  
20.20  
20.00 SQ  
19.80  
1.60 MAX  
0.75  
0.60  
0.45  
109  
108  
109  
108  
144  
144  
1
1
SEATING  
PIN 1  
PLANE  
EXPOSED*  
PAD  
8.80 SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
BOTTOM VIEW  
(PINS UP)  
0.15  
0.05  
COPLANARITY  
36  
73  
73  
36  
0.08  
72  
72  
37  
37  
0.27  
0.22  
0.17  
VIEW A  
0.50  
VIEW A  
BSC  
ROTATED 90° CCW  
LEAD PITCH  
COMPLIANT TO JEDEC STANDARDS MS-026-BFB-HD  
*EXPOSED PAD IS COINCIDENT WITH BOTTOM SURFACE AND  
DOES NOT PROTRUDE BEYOND IT. EXPOSED PAD IS CENTERED.  
Figure 44. 144-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP]  
(SW-144-1)  
Dimensions shown in millimeters  
Rev. F  
|
Page 50 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
A1 CORNER  
INDEX AREA  
12.10  
12.00 SQ  
11.90  
13  
11  
9
7
5
3
1
14  
12  
10  
8
6
4
2
A
B
C
D
E
F
BALL A1  
INDICATOR  
10.40  
BSC SQ  
TOP VIEW  
G
H
J
BOTTOM VIEW  
0.80 BSC  
K
L
M
N
P
DETAIL A  
1.70 MAX  
1.31  
1.21  
1.10  
DETAIL A  
0.25 MIN  
0.12 MAX  
COPLANARITY  
*
0.50  
0.45  
0.40  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT WITH JEDEC STANDARDS MO-205-AE  
WITH EXCEPTION TO BALL DIAMETER.  
Figure 45. 136-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-136)  
Dimensions shown in millimeters  
SURFACE-MOUNT DESIGN  
Table 44 is provided as an aid to PCB design. For industry stan-  
dard design recommendations, refer to IPC-7351, Generic  
Requirements for Surface-Mount Design and Land Pattern  
Standard.  
Table 44. BGA Data for Use with Surface-Mount Design  
Package  
136-Ball CSP_BGA (BC-136)  
Ball Attach Type  
Solder Mask Defined  
Solder Mask Opening  
0.40 mm diameter  
Ball Pad Size  
0.53 mm diameter  
Rev. F  
|
Page 51 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
AUTOMOTIVE PRODUCTS  
An ADSP-2136x model is available for automotive applications  
with controlled manufacturing. Note that this special model  
may have specifications that differ from the general  
release models.  
The automotive grade product shown in Table 45 is available for  
use in automotive applications. Contact your local ADI account  
representative or authorized ADI product distributor for spe-  
cific product ordering information. Note that all automotive  
products are RoHS compliant.  
Table 45. Automotive Products  
Temperature  
Range1  
Instruction  
Rate  
On-Chip  
SRAM  
Package  
Option  
Model  
ROM  
Package Description  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
AD21362WBBCZ104  
AD21362WBSWZ104  
AD21362WYSWZ204  
AD21363WBBCZ105  
AD21363WBSWZ105  
AD21363WYSWZ205  
AD21364WBBCZ105  
AD21364WBSWZ105  
AD21364WYSWZ205  
AD21365WBSWZ104A  
AD21365WYSWZ204A  
AD21366WBBCZ105A  
AD21366WBSWZ105A  
AD21366WYSWZ205A  
–40ºC to 85ºC  
–40ºC to 85ºC  
–40ºC to 105ºC  
–40ºC to 85ºC  
–40ºC to 85ºC  
–40ºC to 105ºC  
–40ºC to 85ºC  
–40ºC to 85ºC  
–40ºC to 105ºC  
–40ºC to 85ºC  
–40ºC to 105ºC  
–40ºC to 85ºC  
–40ºC to 85ºC  
–40ºC to 105ºC  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
200 MHz  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
BC-136  
SW-144-1  
SW-144-1  
BC-136  
SW-144-1  
SW-144-1  
BC-136  
SW-144-1  
SW-144-1  
SW-144-1  
SW-144-1  
BC-136  
SW-144-1  
SW-144-1  
1 Referenced temperature is ambient temperature.  
Rev. F  
|
Page 52 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
ORDERING GUIDE  
Temperature  
Range1  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
0°C to +70°C  
Instruction  
Rate  
On-Chip  
SRAM  
Package  
Option  
BC-136  
Model  
ROM  
Package Description  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
ADSP-21362BBCZ-1AA2, 3  
ADSP-21362BSWZ-1AA2, 3  
ADSP-21362YSWZ-2AA2, 3  
ADSP-21363KBC-1AA  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
200 MHz  
200 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
200 MHz  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
SW-144-1  
SW-144-1  
BC-136  
ADSP-21363KBCZ-1AA3  
ADSP-21363KSWZ-1AA3  
ADSP-21363BBC-1AA  
ADSP-21363BBCZ-1AA3  
ADSP-21363BSWZ-1AA3  
ADSP-21363YSWZ-2AA3, 5  
ADSP-21364KBC-1AA  
ADSP-21364KBCZ-1AA3  
ADSP-21364KSWZ-1AA3  
ADSP-21364BBC–1AA  
ADSP-21364BBCZ-1AA3  
ADSP-21364BSWZ-1AA3  
ADSP-21364YSWZ-2AA3  
ADSP-21365BBCZ-1AA2, 3, 4, 5  
ADSP-21365BSWZ-1AA2, 3, 4, 5  
ADSP-21365YSWZ-2AA2, 3, 4, 5  
ADSP-21365YSWZ-2CA2, 3, 4, 5  
ADSP-21366KBC-1AA4, 5  
ADSP-21366KBCZ-1AR3, 4, 5, 6  
ADSP-21366KBCZ-1AA3, 4, 5  
ADSP-21366KSWZ-1AA3, 4, 5  
ADSP-21366BBC–1AA4, 5  
ADSP-21366BBCZ-1AA3, 4, 5  
ADSP-21366BSWZ-1AA3, 4, 5  
ADSP-21366YSWZ-2AA3, 4, 5  
0°C to +70°C  
BC-136  
0°C to +70°C  
SW-144-1  
BC-136  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
0°C to +70°C  
BC-136  
SW-144-1  
SW-144-1  
BC-136  
0°C to +70°C  
BC-136  
0°C to +70°C  
SW-144-1  
BC-136  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
0°C to +70°C  
BC-136  
SW-144-1  
SW-144-1  
BC-136  
SW-144-1  
SW-144-1  
SW-144-1  
BC-136  
0°C to +70°C  
BC-136  
0°C to +70°C  
BC-136  
0°C to +70°C  
SW-144-1  
BC-136  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
BC-136  
SW-144-1  
SW-144-1  
1 Referenced temperature is ambient temperature.  
2 License from DTLA required for these products.  
3 Z = RoHS compliant part.  
4 Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at  
www.analog.com/SHARC.  
5 License from Dolby Laboratories, Inc., and Digital Theater Systems (DTS) required for these products.  
6 R = Tape and reel.  
Rev. F  
|
Page 53 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Rev. F  
|
Page 54 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Rev. F  
|
Page 55 of 56  
|
March 2010  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06359-0-3/10(F)  
Rev. F  
|
Page 56 of 56  
|
March 2010  

相关型号:

AD21365WYSWZ2XXA

IC 16-BIT, 33.33 MHz, OTHER DSP, PQFP144, ROHS COMPLIANT, MO-026BFB-HD, LQFP-144, Digital Signal Processor
ADI

AD21366WBBCZ105A

16-BIT, 16.67MHz, MIXED DSP, PBGA136, ROHS COMPLIANT, MO-205AE, CSPBGA-136
ADI

AD21366WBBCZ1XXA

IC 16-BIT, 55.55 MHz, OTHER DSP, PBGA136, ROHS COMPLIANT, MO-205AE, CSBGA-136, Digital Signal Processor
ADI

AD21366WBSWZ105A

16-BIT, 16.67MHz, MIXED DSP, PQFP144, ROHS COMPLIANT, MS-026BFBHD, LQFP-144
ADI

AD21366WBSWZ1XXA

IC 16-BIT, 55.55 MHz, OTHER DSP, PQFP144, ROHS COMPLIANT, MO-026BFB-HD, LQFP-144, Digital Signal Processor
ADI

AD21366WYSWZ205A

16-BIT, 16.67MHz, MIXED DSP, PQFP144, ROHS COMPLIANT, MS-026BFBHD, LQFP-144
ADI

AD21366WYSWZ2XXA

IC 16-BIT, 33.33 MHz, OTHER DSP, PQFP144, ROHS COMPLIANT, MO-026BFB-HD, LQFP-144, Digital Signal Processor
ADI

AD2140F60DCA

Small and light size
VANLONG

AD2140F60HCA

Small and light size
VANLONG

AD21462WBBZ3

SHARC Processor material that is subject to change without notice
ADI

AD21465WBBZ3

SHARC Processor material that is subject to change without notice
ADI

AD21469WBBZ3XX

IC 8-BIT, 28.125 MHz, MIXED DSP, PBGA324, 19 X 19 MM, ROHS COMPLIANT, PLASTIC, MS-034BAR-2, BGA-324, Digital Signal Processor
ADI