AD1845JP-REEL [ADI]

Parallel-Port 16-Bit SoundPort Stereo Codec; 并口16位SoundPort立体声编解码器
AD1845JP-REEL
型号: AD1845JP-REEL
厂家: ADI    ADI
描述:

Parallel-Port 16-Bit SoundPort Stereo Codec
并口16位SoundPort立体声编解码器

解码器 编解码器
文件: 总40页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Parallel-Port 16-Bit  
SoundPort® Stereo Codec  
a
AD1845  
FEATURES  
plete on-chip filtering, MPC Level-2 compliant analog mixing,  
programmable gain, attenuation and mute, a variable sample  
frequency generator, FIFOs, and supports advanced power-  
down modes. It provides a direct, byte-wide interface to both  
ISA (“AT ”) and EISA computer buses for simplified implemen-  
tation on a computer motherboard or add-in card.  
Single-Chip Integrated ∑∆ Digital Audio Stereo Codec  
Microsoft® and Window s® Sound System Com patible  
MPC Level-2+ Com pliant Mixing  
16 m A Bus Drive Capability  
Supports Tw o DMA Channels for Full Duplex Operation  
On-Chip Capture and Playback FIFOs  
Advanced Pow er-Dow n Modes  
Program m able Gain and Attenuation  
Sam ple Rates from 4.0 kHz to 50 kHz Derived from a  
Single Clock or Crystal Input  
68-Lead PLCC, 100-Lead TQFP Packages  
Operation from +5 V Supplies  
Byte-Wide Parallel Interface to ISA and EISA Buses  
Pin Com patible w ith AD1848, AD1846, CS4248, CS4231  
T he AD1845 SoundPort Stereo Codec supports a DMA re-  
quest/grant architecture for transferring data with the host com-  
puter bus. One or two DMA channels can be supported.  
Programmed I/O (PIO) mode is also supported for control  
register accesses and for applications lacking DMA control.  
T wo input control lines support mixed direct and indirect ad-  
dressing of thirty-seven internal control registers over this asyn-  
chronous interface. T he AD1845 includes dual DMA count  
registers for full duplex operation enabling the AD1845 to cap-  
ture data on one DMA channel and play back data on a separate  
channel. T he FIFOs on the AD1845 reduce the risk of losing  
data when making DMA transfers over the ISA/EISA bus. T he  
FIFOs buffer data transfers and allow for relaxed timing in  
acknowledging requests for capture and playback data.  
P RO D UCT O VERVIEW  
T he Parallel Port AD1845 SoundPort Stereo Codec integrates  
key audio data conversion and control functions into a single  
integrated circuit. T he AD1845 provides a complete, single chip  
computer audio solution for business audio and multimedia  
applications. T he codec includes stereo audio converters, com-  
(Continued on Page 9)  
FUNCTIO NAL BLO CK D IAGRAM  
ANALOG  
POWER DOWN  
RESET  
ANALOG SUPPLY  
DIGITAL SUPPLY  
CLOCK SOURCE  
DIGITAL  
L_MIC  
R_MIC  
0 dB/  
20 dB  
VARIABLE SAMPLE  
FREQUENCY GENERATOR  
AD1845  
PLAYBACK REQ  
PLAYBACK ACK  
CAPTURE REQ  
CAPTURE ACK  
ADR1:0  
L_LINE  
R_LINE  
L_AUX1  
R_AUX1  
L
⌺⌬ A/D  
CONVERTER  
M
U
X
GAIN  
-LAW  
A-LAW  
FIFO  
R
⌺⌬ A/D  
CONVERTER  
LINEAR  
GAIN  
P
A
R
A
L
L
E
L
DATA7:0  
DIGITAL MIX  
ATTENUATE  
GAM = GAIN  
ATTENTUATE  
GAM  
GAM  
GAM  
CS  
MUTE  
RD  
L
⌺⌬ D/A  
CONVERTER  
ATTENUATE  
MUTE  
P
O
R
T
L_OUT  
M_OUT  
R_OUT  
WR  
-LAW  
A-LAW  
LINEAR  
MUTE  
FIFO  
BUS DRIVER  
CONTROL  
R
⌺⌬ D/A  
CONVERTER  
ATTENUATE  
MUTE  
HOST DMA  
INTERRUPT  
EXTERNAL  
CONTROL  
GAM  
GAM  
M_IN  
L_AUX2  
R_AUX2  
REFERENCE  
CONTROL  
REGISTERS  
V
V
REF  
REF_F  
SoundPort is a registered trademark of Analog Devices, Inc.  
Microsoft and Windows are registered trademarks of Microsoft Corporation.  
REV. C  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
AD1845–SPECIFICATIONS  
STAND ARD TEST CO ND ITIO NS UNLESS O TH ERWISE NO TED  
DAC Test Conditions  
Calibrated  
T emperature  
25  
°C  
V
V
kHz  
Hz  
Digital Supply (VDD  
Analog Supply (VCC  
Word Rate (FS)  
Input Signal  
Analog Output Passband  
ADC FFT Size  
)
)
5.0  
5.0  
48  
0 dB Relative to Full Scale  
16-Bit Linear Mode  
10 kOutput Load  
Mute Off, OL = 0  
ADC Test Conditions  
Calibrated  
1008  
20 Hz to 20 kHz  
2048  
DAC FFT Size  
8192  
0 dB Gain  
–1.0 dB Relative to Full Scale  
Line Input  
VIH  
VIL  
5
0
V
V
16-Bit Linear Mode  
ANALO G INP UT  
Min  
Typ  
Max  
Units  
Input Voltage (RMS Values Assume Sine Wave Input)  
Line  
1
V rms  
V p-p  
V rms  
V p-p  
V rms  
V p-p  
kΩ  
2.55  
2.83  
0.1  
0.283  
1
2.83  
17  
3.35  
0.335  
3.35  
MIC with +20 dB Gain (MGE = 1)  
MIC with 0 dB Gain (MGE = 0)  
0.255  
2.55  
10  
Input Impedance*  
Input Capacitance  
15  
pF  
P RO GRAMMABLE GAIN AMP LIFIERAD C  
Min  
Typ  
Max  
Units  
Step Size (All Steps T ested)  
(0 dB to 22.5 dB)  
PGA Gain Range Span  
0.7  
21.5  
1.5  
22.5  
1.9  
23.5  
dB  
dB  
AUXILIARY LINE, MO NO , AND MICRO P H O NE INP UT ANALO G GAIN/AMP LIFIERS/ATTENUATO RS  
Min  
Typ  
Max  
Units  
Step Size : AUX1, AUX2, LINE, MIC (All Steps T ested)  
(+12 dB to –30 dB)  
(–31.5 dB to –34.5 dB)  
1.25  
1
1.5  
1.5  
1.75  
2.0  
dB  
dB  
Step Size: M_IN (All Steps T ested)  
(0 dB to –39 dB)  
(–42 dB to –45 dB)  
Input Gain/Attenuation Range: AUX1, AUX2, LINE, MIC  
Input Gain/Attenuation Range: M_IN  
2.5  
2.2  
45.0  
42  
3.0  
3.0  
46.5  
45  
3.6  
dB  
dB  
dB  
dB  
3.85  
49.0  
49  
D IGITAL D ECIMATIO N AND INTERP O LATIO N FILTERS*  
Min  
Max  
Units  
Passband  
0
0.4 × FS  
±0.1  
0.6 × FS  
Hz  
dB  
Hz  
Hz  
dB  
Passband Ripple  
T ransition Band  
Stopband  
Stopband Rejection  
Group Delay  
0.4 × FS  
0.6 × FS  
74  
15/FS  
0.0  
Group Delay Variation Over Passband  
µs  
*Guaranteed, not tested.  
–2–  
REV. C  
AD1845  
ANALO G-TO -D IGITAL CO NVERTERS  
Min  
Typ  
Max  
Units  
Resolution  
16  
81  
Bits  
dB  
%
dB  
dB  
Dynamic Range (–60 dB Input, T HD+N Referenced to Full Scale, A-Weighted)  
T HD+N (Referenced to Full Scale)  
73  
0.025  
–72  
–76  
85  
Signal-to-Intermodulation Distortion  
ADC Crosstalk*  
Line Inputs (Input L, Ground R, Read R; Input R, Ground L, Read L)  
Line to MIC (Input LINE, Ground and Select MIC, Read ADC)  
Line to AUX1  
–90  
–90  
–90  
–90  
–80  
–80  
–80  
–80  
+10  
±0.9  
10  
dB  
dB  
dB  
dB  
%
Line to AUX2  
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)  
Interchannel Gain Mismatch (Difference of Gain Errors)  
ADC Offset Error  
–18.5  
dB  
mV  
D IGITAL-TO -ANALO G CO NVERTERS  
Min  
Typ  
Max  
Units  
Resolution  
16  
82  
Bits  
dB  
%
dB  
dB  
%
dB  
dB  
dB  
dB  
Dynamic Range (–60 dB Input, T HD+N Referenced to Full Scale, A-Weighted)  
T HD+N (Referenced to Full Scale)  
74  
0.032  
–70  
–78  
90  
Signal-to-Intermodulation Distortion  
Gain Error (Full-Scale Span Relative to Nominal Output Voltage)  
Interchannel Gain Mismatch (Difference of Gain Errors)  
DAC Crosstalk* (Input L, Zero R, Measure R_OUT ; Input R, Zero L, Measure L_OUT )  
T otal Out-of-Band Energy (Measured from 0.6 × FS to 100 kHz)*  
Audible Out-of-Band Energy (Measured from 0.6 × FS to 20 kHz)*  
–14.5  
+10  
±0.6  
–80  
–50  
–70  
D AC ATTENUATO R  
Min  
Typ  
Max  
Units  
Step Size (0 dB to –22.5 dB)  
Step Size (–22.5 dB to –94.5 dB)*  
Output Attenuation Range Span*  
1.3  
1.0  
93.5  
1.5  
1.5  
94.5  
1.7  
2.0  
95.5  
dB  
dB  
dB  
ANALO G O UTP UT  
Min  
Typ  
Max  
Units  
Full-Scale Output Voltage  
OL = 0  
OL = 1  
Output Impedance*  
1.7  
2.4  
2.0  
2.83  
2.2  
3.11  
600  
V p-p  
V p-p  
External Load Impedance  
Output Capacitance*  
10  
kΩ  
pF  
15  
External Load Capacitance  
VREF  
VREF Current Drive  
VREF Output Impedance  
Mute Attenuation of 0 dB Fundamental* (L_OUT , R_OUT , M_OUT )  
Mute Click (Muted Output Minus Unmuted Midscale DAC Output)*  
100  
2.60  
pF  
V
µA  
kΩ  
dB  
2.05  
2.25  
100  
4
–80  
±5  
mV  
*Guaranteed, not tested.  
REV. C  
–3–  
AD1845  
SYSTEM SP ECIFICATIO NS  
Min  
Min  
Typ  
Max  
Units  
System Frequency Response Ripple (Line In to Line Out)*  
Differential Nonlinearity*  
Phase Linearity Deviation*  
1.0  
±1  
5
dB  
LSB  
Degrees  
STATIC D IGITAL SP ECIFICATIO NS  
Max  
Units  
High Level Input Voltage (VIH  
Digital Inputs  
XT AL1I  
)
2.4  
2.4  
V
V
Low Level Input Voltage (VIL)  
0.8  
V
High Level Output Voltage (VOH ) IOH = –2 mA  
Low Level Output Voltage (VOL) IOL = 2 mA  
Input Leakage Current  
2.4  
V
V
µA  
µA  
0.4  
10  
10  
–10  
–10  
Output Leakage Current  
TIMING P ARAMETERS (GUARANTEED O VER O P ERATING TEMP ERATURE RANGE, VD D = VCC = 5.0 V)  
Min  
Max  
Units  
WR/RD Strobe Width  
(tST W  
(tBWND  
(tWDSU  
)
100  
80  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR/RD Rising to WR/RD Falling  
Write Data Setup to WR  Rising  
RD Falling to Valid Read Data  
CS Setup to WR/RD Falling  
CS Hold from WR/RD Rising  
Adr Setup to WR/RD Falling  
Adr Hold from WR/RD Rising  
DAK Rising to WR/RD Falling  
DAK Falling to WR/RD Rising  
DAK Setup to WR/RD Falling  
Data Hold from RD Rising  
Data Hold from WR Rising  
DRQ Hold from WR/RD Falling  
DAK Hold from WR Rising  
DAK Hold from RD Rising  
)
)
)
(tRDDV  
40  
(tCSSU  
(tCSHD  
(tADSU  
(tADHD  
(tSUDK1  
(tSUDK2  
(tDKSU  
(tDHD1  
(tDHD2  
(tDRHD  
(tDKHDa  
(tDKHDb  
)
10  
0
10  
10  
20  
0
)
)
)
)
)
)
)
)
10  
20  
25  
15  
)
)
)
10  
10  
DBEN/ DBDIR Delay from WR/ RD Falling (tDBDL  
PWRDWN and RESET Low Pulsewidth  
)
30  
300  
*Guaranteed, not tested.  
REV. C  
–4–  
AD1845  
P O WER SUP P LY  
Min  
Typ  
Max  
Units  
Power Supply Range–Digital and Analog  
Power Supply Current  
Analog Supply Current  
4.75  
5.25  
130  
45  
V
mA  
mA  
mA  
Digital Supply Current  
85  
Power Dissipation  
(Current × Nominal Supplies)  
Power-Down Supply Current  
Reset Supply Current  
T otal Power-Down Supply Current  
Standby Supply Current  
Mixer Power-Down Supply Current  
Mixer Only Supply Current  
ADC Power-Down Supply Current  
DAC Power-Down Supply Current  
Power Supply Rejection (100 mV p-p Signal @ 1 kHz)*  
(At Both Analog and Digital Supply Pins, both ADCs and DACs)  
650  
2
mW  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
2
30  
70  
36  
52  
80  
85  
40  
dB  
CLO CK SP ECIFICATIO NS*  
Min  
Max  
Units  
Input Clock Frequency  
Recommended Clock Duty Cycle  
Power Up Initialization T ime  
33  
90  
512  
MHz  
%
ms  
10  
*Guaranteed, not tested.  
Specifications subject to change without notice.  
O RD ERING GUID E  
ABSO LUTE MAXIMUM RATINGS*  
Min  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption1  
Max  
Units  
Model  
Power Supplies  
AD1845JP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
68-Lead PLCC  
68-Lead PLCC  
100-Lead T QFP ST -100  
P-68A  
P-68A  
Digital (VDD  
Analog (VCC  
Input Current  
)
)
–0.3  
–0.3  
6.0  
6.0  
V
V
AD1845JP-REEL2  
AD1845JST  
(Except Supply Pins)  
Analog Input Voltage (Signal Pins) –0.3  
Digital Input Voltage (Signal Pins) –0.3  
Ambient T emperature (Operating)  
Storage T emperature  
±10.0  
mA  
V
V
°C  
°C  
NOT ES  
1P = Plastic Leaded Chip Carrier; ST = T hin Quad Flatpack.  
213" Reel, multiples of 250 pcs.  
VCC +0.3  
VDD +0.3  
+70  
0
–65  
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
+150  
*Stresses greater than those listed under Absolute Maximum Ratings may cause  
permanent damage to the device. T his is a stress rating only; functional operation  
of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
T
AMB = T CASE – (PD × θCA)  
T CASE = Case T emperature in °C  
PD = Power Dissipation in W  
θCA = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
P ackage  
JA  
JC  
CA  
PLCC  
T QFP  
38°C/W  
44°C/W  
8°C/W  
8°C/W  
30°C/W  
93°C/W  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD1845 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–5–  
AD1845  
P IN D ESIGNATIO NS  
60 RD  
ADR0  
CDAK  
CDRQ  
PDAK  
PDRQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
59 CS  
58 XCTL1  
57 INT  
56 XCTL0  
55 NC  
V
DD  
68-Lead P LCC  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
V
DD  
AD1845  
TOP VIEW  
(Not to Scale)  
GNDD  
XTAL1I  
XTAL1O  
GNDD  
NC  
NC  
V
DD  
NC  
GNDD  
XTAL2I  
XTAL2O  
PWRDWN  
RESET  
NC  
NC  
M_OUT  
M_IN  
V
DD  
GNDD  
GNDD  
R_FILT  
NC = NO CONNECT  
RD  
75  
ADR0  
NC  
1
2
CS  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
XCTL1  
INT  
NC  
3
NC  
4
XCTL0  
NC  
NC  
5
CDAK  
CDRQ  
PDAK  
PDRQ  
6
NC  
7
V
DD  
8
GNDD  
NC  
9
V
10  
DD  
NC  
GNDD 11  
XTAL1I 12  
XTAL1O 13  
AD1845  
NC  
100-Lead TQFP  
NC  
TOP VIEW  
NC  
(Not to Scale)  
V
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
DD  
NC  
GNDD  
XTAL2I  
XTAL2O  
PWRDWN  
RESET  
GNDD  
NC  
NC  
NC  
NC  
M_OUT  
M_IN  
V
DD  
GNDD  
NC  
NC  
NC  
NC  
NC  
NC  
R_FILT  
NC = NO CONNECT  
REV. C  
–6–  
AD1845  
P IN FUNCTIO N D ESCRIP TIO NS  
P ar allel Inter face  
P in Nam e  
P LCC TQFP  
I/O  
D escription  
CDRQ  
12  
7
O
Capture Data Request. T he assertion of this signal HI indicates that the codec has a cap-  
tured audio sample from the ADC ready for transfer. T his signal will remain asserted  
until the internal capture FIFO is empty.  
CDAK  
11  
14  
6
9
I
Capture Data Acknowledge. T he assertion of this active LO signal indicates that the RD  
cycle occurring is a DMA read from the capture buffer.  
PDRQ  
O
Playback Data Request. T he assertion of this signal HI indicates that the codec is ready  
for more DAC playback data. T he signal will remain asserted until the internal playback  
FIFO is full.  
PDAK  
13  
8
I
I
Playback Data Acknowledge. T he assertion of this active LO signal indicates that the WR  
cycle occurring is a DMA write to the playback buffer.  
ADR1:0  
9 & 10 100 & 1  
Codec Addresses. T hese address pins are asserted by the codec interface logic during a  
control register/PIO access. T he state of these address lines determine which direct  
register is accessed.  
RD  
WR  
60  
61  
59  
75  
76  
74  
I
I
I
Read Command Strobe. T his active LO signal defines a read cycle from the codec. T he  
cycle may be a read from the control/PIO registers, or the cycles could be a read from  
the codec’s DMA sample registers.  
Write Command Strobe. T his active LO signal indicates a write cycle to the codec. T he  
cycle may be a write to the control/PIO registers, or the cycle could be a write to the  
codec’s DMA sample registers.  
CS  
AD1845 Chip Select. T he codec will not respond to any control/PIO cycle accesses  
unless this active LO signal is LO. T his signal is ignored during DMA transfers.  
DAT A7:0  
DBEN  
3–6 & 84–87 & I/O  
65–68 90–93  
Data Bus. T hese pins transfer data and control information between the codec and  
the host.  
63  
78  
O
Data Bus Enable. T his pin enables the external bus drivers. T his signal is normally HI.  
For control register/PIO cycles,  
DBEN = (WR or RD) and CS  
For DMA cycles,  
DBEN = (WR or RD) and (PDAK or CDAK).  
DBDIR  
62  
77  
O
Data Bus Direction. T his pin controls the direction of the data bus transceiver. HI  
enables writes from the host bus to the AD1845; LO enables reads from the AD1845 to  
the host bus. T his signal is normally HI.  
For control register/PIO cycles,  
DBDIR = RD and CS  
For DMA cycles,  
DBDIR = RD and (PDAK or CDAK).  
REV. C  
–7–  
AD1845  
Analog Signals  
P in Nam e  
P LCC TQFP  
I/O  
D escription  
L_LINE  
R_LINE  
L_MIC  
30  
27  
29  
31  
28  
30  
I
I
I
Left Line Input.  
Right Line Input.  
Left Microphone Input. T his signal can be either line level or –20 dB from line level  
(using the on-chip 20 dB gain block).  
R_MIC  
28  
29  
I
Right Microphone Input. T his signal can be either line level or –20 dB from line level  
(using the on-chip 20 dB gain block).  
L_AUX1  
R_AUX1  
L_AUX2  
R_AUX2  
L_OUT  
R_OUT  
M_IN  
39  
42  
38  
43  
40  
41  
46  
47  
45  
48  
44  
49  
46  
47  
56  
57  
I
Left Auxiliary # 1 Line Input.  
Right Auxiliary # 1 Line Input.  
Left Auxiliary # 2 Line Input.  
Right Auxiliary # 2 Line Input.  
Left Line Output.  
I
I
I
O
O
I
Right Line Output.  
Mono Input.  
M_OUT  
O
Mono Output.  
Miscellaneous  
P in Nam e  
P LCC TQFP  
I/O  
I
D escription  
XT AL1I  
17  
18  
21  
22  
23  
12  
13  
16  
17  
18  
24.576 MHz Crystal # 1 Input.  
24.576 MHz Crystal # 1 Output.  
Not used on the AD1845.  
Not used on the AD1845.  
XT AL1O  
XT AL2I  
O
XT AL2O  
PWRDWN  
I
Power Down Signal. Active LO places the AD1845 in its lowest power consumption  
mode. All sections of the AD1845, including the digital interface, are shut down and  
consume minimal power.  
INT  
57  
72  
O
O
I
Host Interrupt Pin. A host interrupt is generated to notify the host that a specified  
event has occurred.  
XCT L1:0  
RESET  
58 & 56 73 & 71  
External Control. T hese signals reflect the current status of register bits inside the  
AD1845. T hey can be used for signaling or to control external logic.  
24  
32  
19  
35  
Reset. Active LO resets all digital registers and filters, and resets all analog filters. Active  
LO places the AD1845 in the lowest power consumption mode. XT AL1 is required to be  
running during the minimum low pulsewidth of the reset signal.  
VREF  
O
Voltage Reference. Nominal 2.25 volt reference available for dc-coupling and level-  
shifting. VREF should not be used to sink or source current.  
VREF_F  
33  
31  
38  
33  
I
I
Voltage Reference Filter. Voltage reference filter point for external bypassing only.  
L_FILT  
Left Channel Filter. T his pin requires a 1.0 µF capacitor to analog ground for proper  
operation.  
R_FILT  
NC  
26  
25  
I
Right Channel Filter. T his pin requires a 1.0 µF capacitor to analog ground for proper  
operation.  
48–52, 2–5, 21–24  
No Connect.  
55  
26, 27, 32, 34,  
36, 37, 39,  
50–53, 58–66,  
69, 70, 80–83,  
94–97  
REV. C  
–8–  
AD1845  
P ower Supplies  
P in Nam e  
P LCC  
TQFP  
I/O  
D escription  
VCC  
35 & 36  
34 & 37  
41 & 42  
40 & 43  
I
I
I
Analog Supply Voltage (+5 V).  
Analog Ground.  
GNDA  
VDD  
1, 7, 15,  
19, 45,  
54  
10, 14,  
55, 68,  
88, 98  
Digital Supply Voltage (+5 V).  
GNDD  
2, 8, 16,  
20, 25,  
44, 53,  
64  
11, 15, 20,  
54, 67,  
79, 89,  
99  
I
Digital Ground.  
(Continued from page 1)  
unsigned magnitude PCM linear data, and 8-bit µ-law or A-law  
companded digital data.  
AEN  
AD1845  
ADDRESS  
DECODE  
18  
SA19:2  
SA1  
CS  
A1  
T he ∑∆ DACs are preceded by a digital interpolation filter. An  
attenuator provides independent user volume control over each  
DAC channel. Nyquist images and shaped quantized noise are  
removed from the DACs’ analog stereo output by on-chip  
switched-capacitor and continuous-time filters.  
SA0  
A0  
IOWC  
IORC  
WR  
RD  
I
S
A
8
8
74_245  
DATA7:0  
DATA7:0  
B
U
S
DIR  
DBDIR  
DBEN  
T he AD1845 supports multiple low power and power-down  
modes to support notebook and portable computing multimedia  
applications. T he ADC, DAC, and mixer paths can be sus-  
pended independently allowing the AD1845 to be used for  
capture-only or playback-only, lessening power consumption  
and extending battery life.  
G
B
A
DRQ <X>  
DRQ <Y>  
DAK <X>  
DAK <Y>  
IRQ <Z>  
PDRQ  
CDRQ  
PDAK  
CDAK  
INT  
T he AD1845 includes a variable sample frequency generator,  
that allows the codec to instantaneously change sample rates  
with a resolution of 1 Hz without “clicks” and “pops.” Addi-  
tionally, ∑∆ quantization noise is kept out of the 20 kHz audio  
band regardless of the chosen sample rate. T he codec uses the  
variable sample frequency generator to derive all internal clocks  
from a single external crystal or clock source.  
Figure 1. Interface to ISA Bus  
External circuit requirements are limited to a minimal number  
of low cost support components. Anti-imaging DAC output  
filters are incorporated on-chip. Dynamic range exceeds 80 dB  
over the 20 kHz audio band. Sample rates from 4 kHz to 50 kHz  
are supported from a single external crystal or clock source.  
Expanded Mode (MO D E2)  
MODE1 is the initial state of the AD1845. In this state the  
AD1845 appears as an AD1848 compatible device. T o access  
the expanded modes of operation on the AD1845, the MODE2  
bit should be set in the Miscellaneous Information Control  
Register. When this bit is set to one, 16 additional indirect  
registers can be addressed allowing the user to access the  
AD1845s expanded features. T he AD1845 can return to  
MODE1 operation by clearing the MODE2 bit. In both  
MODE1 and MODE2, the capture and playback FIFOs are  
active to prevent data loss.  
T he AD1845 has built-in 8/16 mA (user selectable) bus drivers.  
If 24 mA drive capability is required, the AD1845 generates  
enable and direction controls for IC bus buffers such as the  
74 245.  
T he codec includes a stereo pair of ∑∆ analog-to-digital con-  
verters and a stereo pair of ∑∆ digital-to-analog converters. T he  
AD1845 mixer surpasses MPC Level-2 recommendations.  
Inputs to the ADC can be selected from four stereo pairs of  
analog signals: line (LINE), microphone (MIC), auxiliary line  
# 1 (AUX1), and post-mixed DAC output. A software-con-  
trolled programmable gain stage allows independent gain for  
each channel going into the ADC. In addition, the analog mixer  
allows the mono input (M_IN), MIC, AUX1, LINE and auxil-  
iary line # 2 (AUX2) signals to be mixed with the DACs’ output.  
T he ADCs’ output can be digitally mixed with the DACs’ input.  
T he additional MODE2 functions are:  
1. Full-Duplex DMA support.  
2. MIC input mixer, mute and volume control.  
3. Mono output with mute control.  
4. Mono input with mixer volume control.  
5. Software controlled advanced power-down modes.  
T he pair of 16-bit outputs from the ADCs is available over a  
byte-wide bidirectional interface that also supports 16-bit digital  
input to the DACs and control information. T he AD1845 can  
accept and generate 16-bit twos complement PCM linear digital  
data in both little endian or big endian byte ordering, 8-bit  
6. Programmable sample rates from 4 kHz to 50 kHz in 1 Hz  
increments.  
REV. C  
–9–  
AD1845  
D igital Mixing  
FUNCTIO NAL D ESCRIP TIO N  
Stereo digital output from the ADCs can be digitally mixed with  
the input to the DACs. Digital output from the ADCs going out  
of the data port is unaffected by the digital mix. Along the  
digital mix datapath, the 16-bit linear output from the ADCs  
is attenuated by an amount specified with control bits. Both  
channels of the digital mix datapath are attenuated by the same  
amount. (Note that internally the AD1845 always works with  
16-bit PCM linear data, digital mixing included; format conver-  
sions take place at the input and output.)  
T his section overviews the functionality of the AD1845 and is  
intended as a general introduction to the capabilities of the  
device. As much as possible, detailed reference information has  
been placed in “Control Registers” and other sections. T he  
user is not expected to refer repeatedly to this section.  
Analog Inputs  
T he AD1845 SoundPort Stereo Codec accepts stereo line-level  
and microphone-level inputs. T he LINE, MIC, AUX1, and  
post-mixed DAC output are available to the ADC multiplexer.  
T he DAC output can be mixed with LINE, MIC, AUX1,  
AUX2 and M_IN. Each channel of the MIC inputs can be  
amplified by +20 dB to compensate for the difference between  
line levels and typical condenser microphone levels.  
Sixty-four steps of –1.5 dB attenuation are supported to –94.5 dB.  
T he digital mix datapath can also be completely muted. Note  
that the level of the mixed signal is also a function of the input  
PGA settings, since they affect the ADCs’ output.  
T he attenuated digital mix data is digitally summed with the  
DAC input data prior to the DACs’ datapath attenuators. T he  
digital sum of digital mix data and DAC input data is clipped at  
plus or minus full scale and does not wrap around. Because both  
stereo signals are mixed before the output attenuators, mix data is  
attenuated a second time by the DACs’ datapath attenuators.  
Analog Mixing  
T he M_IN mono input signal, MIC, LINE, AUX1 and AUX2  
analog stereo signals can be mixed in the analog domain with  
the DAC output. Each channel of each AUX, LINE and MIC  
analog input can be independently gained/attenuated from  
+12 dB to –34.5 dB in 1.5 dB steps or completely muted.  
M_IN can be attenuated from 0 dB to –45 dB in 3 dB steps or  
muted. T he post-mixed DAC outputs are available on L_OUT  
and R_OUT and also to the ADC input multiplexer.  
In case the AD1845 is capturing data, but ADC output data is  
not removed in time (“ADC overrun”), the last sample captured  
before overrun will be used for the digital mix. In case the  
AD1845 is playing back data, but input digital DAC data fails  
to arrive in time (“DAC underrun”), a midscale zero will be  
added to the digital mix data when the DACZ control bit is set  
to 0; otherwise, the DAC will output the previous valid sample  
in an underrun condition.  
Even if the AD1845 is not playing back data from its DACs, the  
analog mix function can still be active.  
Analog-to-D igital D atapath  
T he PGA following the input multiplexer allows independent  
selectable gains for each channel from 0 dB to 22.5 dB in  
+1.5 dB steps. T he codec can operate either in a global stereo  
mode or in a global mono mode with left-channel inputs  
appearing at both channel outputs.  
Analog O utputs  
Stereo and mono line-level outputs are available at external  
pins. Each channel of this output can be independently muted.  
When muted, the outputs will settle to a dc value near VREF, the  
midscale reference voltage. T he output is selectable for 2.0 V  
peak-to-peak or 2.8 V peak-to-peak. When selecting the LINE  
output as an input to the ADC, the ADC automatically com-  
pensates for the output level selection.  
T he AD1845 ∑∆ ADCs incorporate a fourth-order modulator.  
A single pole of passive filtering is all that is required for anti-  
aliasing the analog input because of the ADC’s high over sam-  
pling ratio. T he ADCs include linear-phase digital decimation  
filters that low-pass filter the input to 0.4 × FS. (“FS” is the  
word rate or “sampling frequency.”) ADC input over range  
conditions are reported on status bits in the T est and Initializa-  
tion Register.  
D igital D ata Types  
The AD1845 supports five global data types: 16-bit twos comple-  
ment linear PCM (little endian and big endian byte ordering),  
8-bit unsigned linear PCM, companded µ-law, and 8-bit com-  
panded A-law, as specified by control register bits. Data in all  
formats is always transferred MSB first. All data formats that are  
less than 16 bits are MSB-aligned to ensure the use of full  
system resolution.  
D igital-to-Analog D atapath  
T he ∑∆ DACs are preceded by a programmable attenuator and  
a low-pass digital interpolation filter. T he anti-imaging interpo-  
lation filter over samples and digitally filters the higher fre-  
quency images. T he attenuator allows independent control of  
each DAC channel from 0 dB to –94.5 dB in –1.5 dB steps plus  
full mute. T he DACs’ ∑∆ noise shapers also over sample and  
convert the signal to a single-bit stream. T he DAC outputs are  
then filtered in the analog domain by a combination of switched-  
capacitor and continuous-time filters. T hey remove the very  
high frequency components of the DAC bit stream output. No  
external components are required.  
T he 16-bit PCM data format is capable of representing 96 dB  
of dynamic range. Eight-bit PCM can represent 48 dB of dy-  
namic range. Companded µ-law and A-law data formats use  
nonlinear coding with less precision for large amplitude signals.  
T he loss of precision is compensated for by an increase in dy-  
namic range to 64 dB and 72 dB, respectively.  
On input, 8-bit companded data is expanded to an internal  
linear representation, according to whether µ-law or A-law was  
specified in the codec’s internal registers. Note that when µ-law  
compressed data is expanded to a linear format, it requires  
14 bits. A-law data expanded requires 13 bits.  
Changes in DAC output attenuation take effect only on zero  
crossings, eliminating “zipper” noise on playback. Each chan-  
nel has its own independent zero-crossing detector and attenua-  
tor change control circuitry. A timer guarantees that requested  
volume changes will occur even in the absence of a zero cross-  
ing. T he time-out period is 8 milliseconds at a 48 kHz sampling  
rate and 48 milliseconds at an 8 kHz sampling rate. (T imeout  
[ms] 384 ÷ FS [kHz].)  
REV. C  
–10–  
AD1845  
0
0
0
15  
8 7  
P ower Supplies and Voltage Refer ence  
COMPRESSED  
INPUT DATA  
MSB  
LSB  
T he AD1845 operates from a +5 V power supply. Independent  
analog and digital supplies are recommended for optimal perfor-  
mance though excellent results can be obtained in single-supply  
systems. A voltage reference is included on the codec and its  
2.25 V buffered output is available on an external pin (VREF).  
T he reference output can be used for biasing op amps used in  
dc coupling. T he internal reference is externally bypassed to  
analog ground at the VREF_F pin.  
15  
MSB  
3/2  
2/1  
LSB  
EXPANSION  
DAC INPUT  
15  
MSB  
3/2 2/1  
LSB  
000/00  
Figure 2. µ-Law or A-Law Expansion  
Clocks and Sam ple Rates  
T he AD1845 operates from a single external crystal or clock  
source. From a single input, a wide range of sample rates can be  
generated. T he AD1845 default frequency source is a  
24.576 MHz input. T he AD1845 can also be driven from a  
14.31818 MHz (OSC), 24 MHz, 25 MHz or 33 MHz input  
frequency source. In MODE1, the input drives the internal  
variable sample frequency generator to derive the following  
AD1848 compatible sample rates: 5.5125, 6.615, 8, 9.6,  
11.025, 16, 18.9, 22.05, 27.42857, 32, 33.075, 37.8, 44.1,  
48 kHz. In MODE2, the AD1845 can be programmed to gen-  
erate any sample frequency between 4 kHz and 50 kHz with  
1 Hz resolution. Note that it is no longer required to enter  
Mode Change Enable (MCE) to change the sample rate. T his  
feature allows the user to change the AD1845’s sample rate “on  
the fly.”  
When 8-bit companding is specified, the ADCs’ linear output is  
compressed to the format specified.  
0
15  
MSB  
LSB  
ADC OUTPUT  
TRUNCATION  
15  
MSB  
0
0
3/2 2/1  
LSB  
15  
MSB  
8 7  
LSB  
COMPRESSION  
00000000  
Figure 3. µ-Law or A-Law Com pression  
Note that all format conversions take place at input or output.  
Internally, the AD1845 always uses 16-bit linear PCM represen-  
tations to maintain maximum precision.  
CO NTRO L REGISTERS  
Contr ol Register Ar chitectur e  
Tim er Register s  
T he AD1845 SoundPort Stereo Codec accepts both data and  
control information through its byte-wide parallel port. Indirect  
addressing minimizes the number of external pins required to  
access all 37 of its byte-wide internal registers. Only two exter-  
nal address pins, ADR1:0, are required to accomplish all data  
and control transfers. T hese pins select one of five direct regis-  
ters. (ADR1:0 = 3 addresses two registers, depending on  
whether the transfer is for a playback or capture.)  
T he timer registers are provided for system level synchroniza-  
tion, and for periodic interrupt generation. T he 16-bit timer  
time base is determined by the frequency of the connected input  
clock source.  
T he timer is enabled by setting the T imer Enable bit, T E, in the  
Alternate Feature Enable register. T o set the timer, load the  
Upper and Lower T imer Bits Registers. T he timer value will  
then be loaded into an internal count register with a value of  
approximately 10 µs (the exact timer value is listed in the regis-  
ter descriptions). T he internal count register will decrement  
until it reaches zero, then the T imer Interrupt bit, T I, is set and  
an interrupt will be sent to the host. T he next timer clock will  
load the internal count register with the value of the T imer  
Register, and the timer will be reinitialized. T o clear the inter-  
rupt, write to the Status Register or write a “0” to T I.  
AD R1:0  
Register Nam e  
0
1
2
3
Index Address Register  
Indexed Data Register  
Status Register  
PIO Data Register  
Figure 4. Direct Register Map  
Inter r upts  
T he AD1845 supports interrupt conditions generated by DMA  
playback count expiration, DMA capture count expiration, or  
timer expiration. T he INT bit will remain set, HI, until a write  
has been completed to the Status Register or by clearing the T I,  
CI, or PI bit (depending on the existing condition) in the Cap-  
ture Playback T imer Register. T he IEN bit of the Pin Control  
Register determines whether the interrupt pin responds to an  
interrupt condition and reflects the interrupt state on the  
INT status bit.  
REV. C  
–11–  
AD1845  
A write to or a read from the Indexed Data Register will access the Indirect Register which is indexed by the value most recently  
written to the Index Address Register. T he Status Register and the PIO Data Register are always accessible directly, without  
indexing. T he 32 Indirect Register indexes are shown in Figure 5:  
Index  
Register Nam e  
Reset/D efault State  
0
1
Left Input Control  
Right Input Control  
000x  
000x  
0000  
0000  
2
3
Left Aux # 1 Input Control  
Right Aux # 1 Input Control  
1xx0  
1xx0  
1000  
1000  
4
5
Left Aux # 2 Input Control  
Right Aux # 2 Input Control  
1xx0  
1xx0  
1000  
1000  
6
7
Left Output Control  
Right Output Control  
1x00  
1x00  
0000  
0000  
8
9
Clock and Data Format  
Interface Configuration  
0000  
00xx  
0000  
1000  
10  
11  
Pin Control  
T est and Initialization  
00xx  
0000  
xx00  
0000  
12  
13  
Miscellaneous Information  
Digital Mix/Attenuation  
10x0  
0000  
1010  
00x0  
14  
15  
Upper Base Count  
Lower Base Count  
0000  
0000  
0000  
0000  
16  
17  
Alternate Feature Enable/Left MIC Input Control  
MIC Mix Enable/Right MIC Input Control  
0001  
0001  
0001  
000x  
18  
19  
Left Line Gain, Attenuate, Mute, Mix  
Right Line Gain, Attenuate, Mute, Mix  
1xx0  
1xx0  
1000  
1000  
20  
21  
Lower T imer  
Upper T imer  
0000  
0000  
0000  
0000  
22  
23  
Upper Frequency Select  
Lower Frequency Select  
0001  
0100  
1111  
0000  
24  
25  
Capture Playback T imer  
Revision ID  
x000  
100x  
0000  
x000  
26  
27  
Mono Control  
Power-Down Control  
00xx  
000x  
0011  
0xxx  
28  
29  
Capture Data Format Control  
Crystal Clock Select/T otal Power-Down  
0000  
000x  
xxxx  
xxx0  
30  
31  
Capture Upper Base Count  
Capture Lower Base Count  
0000  
0000  
0000  
0000  
“x” indicates reserved bit, always write “0s” to these bits.  
Figure 5. Indirect Register Map and Reset/Default States  
A detailed map of all direct and indirect register contents is summarized for reference as follows:  
REV. C  
–12–  
AD1845  
Direct Registers  
AD Rl:0  
D ata 7  
INIT  
IXD7  
CU/L  
CD7  
D ata 6  
MCE  
IXD6  
CL/R  
CD6  
D ata 5  
TRD  
D ata 4  
IXA4  
IXD4  
SOUR  
CD4  
D ata 3  
IXA3  
IXD3  
PU/L  
CD3  
D ata 2  
IXA2  
IXD2  
PL/R  
CD2  
D ata 1  
D ata 0  
IXA0  
IXD0  
INT  
0
1
2
3
3
IXA1  
IXD1  
PRDY  
CD1  
IXD5  
CRDY  
CD5  
CD0  
PD0  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
Indirect Registers  
IXA3:0  
D ata 7  
LSS1  
D ata 6  
LSS0  
RSS0  
res  
D ata 5  
LMGE  
RMGE  
res  
D ata 4  
res  
D ata 3  
LIG3  
D ata 2  
LIG2  
RIG2  
LX1A2  
RX1A2  
LX2A2  
RX2A2  
LDA2  
RDA2  
CFS1  
SDC  
D ata 1  
LIG1  
RIG1  
LX1A1  
RX1A1  
LX1A1  
RX2A1  
LDA1  
RDA1  
CFS0  
CEN  
D ata 0  
LIG0  
RIG0  
LX1A0  
RX1A0  
LX2A0  
RX2A0  
LDA0  
RDA0  
CSS  
0
1
RSS1  
res  
RIG3  
LX1A3  
RX1A3  
LX2A3  
RX2A3  
LDA3  
RDA3  
CFS2  
ACAL  
res  
2
LMX1  
RMX1  
LMX2  
RMX2  
LDM  
LX1A4  
RX1A4  
LX2A4  
RX2A4  
LDA4  
RDA4  
S/M  
3
res  
res  
4
res  
res  
5
res  
res  
6
res  
LDA5  
RDA5  
C/L  
7
RDM  
FMT1  
CPIO  
XCTL1  
COR  
res  
8
FMT0  
PPIO  
XCTL0  
PUR  
MODE2  
DMA4  
UB6  
LB6  
9
res  
res  
PEN  
10  
11  
12  
13  
14  
15  
res  
res  
res  
IEN  
INITD  
ORL0  
ID0  
ACI  
DRS  
res  
ORR1  
ID3  
ORR0  
ID2  
ORL1  
ID1  
MID  
BUF8  
DMA3  
UB5  
LB5  
DMA5  
UB7  
DMA2  
UB4  
DMA1  
UB3  
DMA0  
UB2  
res  
DME  
UB0  
UB1  
LB7  
LB4  
LB3  
LB2  
LB1  
LB0  
Expanded Mode (Requires MO D E2=1)  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
OL  
LMME  
LLM  
TE  
RMME  
res  
LMG4  
RMG4  
res  
LMG3  
RMG3  
LLG4  
RLG4  
TL4  
TU4  
FU4  
FL4  
LMG2  
RMG2  
LLG3  
RLG3  
TL3  
LMG1  
RMG1  
LLG2  
RLG2  
TL2  
LMG0  
RMG0  
LLG1  
RLG1  
TL1  
DACZ  
res  
LLG0  
RLG0  
TL0  
RLM  
TL7  
res  
res  
TL6  
TL5  
TU7  
TU6  
TU5  
FU5  
TU3  
FU3  
TU2  
FU2  
TU1  
FU1  
TU0  
FU7  
FU6  
FU0  
FL7  
FL6  
FL5  
FL3  
FL2  
FL1  
FL0  
res  
TI  
CI  
PI  
CU  
CO  
PO  
PU  
V2  
V1  
V0  
res  
res  
CID2  
MIA2  
res  
CID1  
MIA1  
res  
CID0  
MIA0  
res  
MIM  
ADCPWD  
CFMT1  
XFS2  
CUB7  
CLB7  
MOM  
DACPWD  
CFMT0  
XFS1  
CUB6  
CLB6  
res  
res  
MIA3  
FREN  
res  
MIXPWD  
CC/L  
XFS0  
CUB5  
CLB5  
res  
CS/M  
res  
res  
res  
res  
res  
res  
res  
TOTPWD  
CUB0  
CLB0  
CUB4  
CLB4  
CUB3  
CLB3  
CUB2  
CLB2  
CUB1  
CLB1  
Figure 6. Register Sum m ary  
Note that the only sticky bit in any of the AD1845 control registers is the interrupt (INT ) bit. All other bits can change with every  
sample period.  
REV. C  
–13–  
AD1845  
D IRECT CO NTRO L REGISTER D EFINITIO NS  
Index Address Register (ADR1:0 = 0)  
AD R1:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0
INIT  
MCE  
TRD  
IXA4  
IXA3  
IXA2  
IXA1  
IXA0  
IXA4:0  
T RD  
Index Address. T hese bits define the address of the AD1845 register accessed by the Indexed Data Register.  
T hese bits are read/write. IXA4 is not active in MODE1. Always write 0 to this bit when using the AD1845 in  
MODE1.  
T ransfer Request Disable. T his bit, when set, causes PIO and DMA transfers to cease when the Interrupt Status  
(INT ) bit of the Status Register is set.  
0
T ransfers Enabled During Interrupt. PDRQ and CDRQ pin outputs are generated uninhibited by interrupts.  
DMA Current Counter Register decrements with every sample transferred when either PEN or CEN are enabled.  
T ransfers Disabled By Interrupt. PDRQ and CDRQ pin outputs are generated only if INT bit is 0 (when  
either PEN or CEN, respectively are enabled). Any pending playback or capture requests are allowed to  
complete at the time when INT is set. After pending requests complete, the data in the FIFO will be con-  
sumed at the sample rate. Subsequently, the midscale inputs will be internally generated for the DACs if  
the DACZ bit is set, otherwise, the previous valid sample will be repeated, and the ADC output buffer will  
contain the last valid output. Clearing the sticky INT bit (or the TRD bit) will cause the resumption of  
playback and/or capture requests (presuming PEN and/or CEN are enabled). T he DMA Current Counter  
Register will not decrement while both the T RD bit is set and the INT bit is a one. No over run or under  
run error will be reported when transfers are disabled by INT .  
1
MCE  
Mode Change Enable. T his bit must be set whenever the current functional mode of the AD1845 is changed  
where noted in the Indirect Control Registers 8, 9, 28 and 29. MCE must be cleared at the completion of the  
desired register changes.  
T he DAC outputs are automatically muted when the MCE bit is set. After MCE is cleared, the DAC outputs will  
be restored to the state specified by the LDM and RDM mute bits.  
Both ADCs and DACs are automatically muted for 32 sample cycles after exiting the MCE state to allow the refer-  
ence and all filters to settle. T he ADCs will produce midscale values; the DACs’ analog output will be muted. All  
converters are internally operating during these 32 sample cycles, and the AD1845 will expect playback data and  
will generate (midscale) capture data. Note that the autocalibrate-in-progress (ACI) bit will be set on exiting from  
the MCE state only when ACAL is set. If ACAL bit is set, ACI will remain HI for these 384 sample cycles, allow-  
ing system software to poll this bit rather than count cycles.  
Special sequences must be followed if autocalibrate (ACAL) is set during mode change enable. See the  
“Autocalibration” section.  
INIT  
AD1845 Initialization. T his bit is set when the AD1845 cannot respond to parallel bus cycles. T his bit is  
read-only.  
Immediately after reset and once the AD1845 has left the INIT state, the initial value of this register will be “0100 0000 (40h).”  
During AD1845 initialization, this register cannot be written and always reads “1000 0000 (80h).”  
Indexed Data Register (ADR1:0 = 1)  
AD R1:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1
IXD7  
IXD6  
IXD5  
IXD4  
IXD3  
IXD2  
IXD1  
IXD0  
IXD7:0  
Indexed Register Data. T hese bits contain the contents of the AD1845 register referenced by the Indexed Data  
Register.  
During AD1845 initialization, this register cannot be written and always reads as “1000 0000 (80h).”  
REV. C  
–14–  
AD1845  
Status Register (ADR1:0 = 2)  
AD R1:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
2
CU/L  
CL/R  
CRDY  
SOUR  
PU/L  
PL/R  
PRDY  
INT  
INT  
Interrupt Status. T his sticky bit (the only one) indicates the status of the interrupt logic of the AD1845. T his bit  
is cleared by any host write of any value to this register. T he IEN bit of the Pin Control Register determines  
whether the state of this bit is reflected on the INT pin of the AD1845. T he only interrupt conditions supported  
by the AD1845 are generated by the underflow of the DMA Current Count Register or the T imer Registers. T he  
T imer Register operates at a 10 µs resolution. Clearing INT requires a 10 µs wait. If an immediate clearing of a T I  
condition is desired, clear the T E bit to remove the timer interrupt.  
0
1
Interrupt pin inactive  
Interrupt pin active  
PRDY  
Playback Data Register Ready. The PIO or DMA Playback Data Register is ready for more data. T his bit is intended  
to be used when direct programmed I/O data transfers are desired; however, it is also valid for DMA transfers.  
T his bit is read-only.  
0
1
DAC data is still valid. Do not overwrite.  
DAC data is stale. Ready for next host data write value.  
PL/R  
PU/L  
Playback Left/Right Sample. T his bit indicates whether the PIO or DMA playback data needed is for the right  
channel DAC or left channel DAC. T his bit is read-only.  
0
1
Right channel needed  
Left channel or mono  
Playback Upper/Lower Byte. T his bit indicates whether the PIO or DMA playback data needed is for the upper or  
lower byte of the channel. T his bit is read-only.  
0
1
Lower byte needed  
Upper byte needed or any 8-bit mode  
SOUR  
CRDY  
Sample Over/Underrun. T his bit indicates that the most recent sample was not serviced in time and therefore  
either a capture overrun (COR) or playback underrun (PUR) has occurred. T he bit indicates an overrun for ADC  
capture and an underrun for DAC playback. If both capture and playback are enabled, the source that set this bit  
can be determined by reading COR and PUR. This bit changes on a sample by sample basis. This bit is read-only.  
Capture Data Ready. T he PIO Capture Data Register contains data ready for reading by the host. T his bit  
should only be used when direct programmed I/O data transfers are desired. T his bit is read-only.  
0
1
ADC data is stale. Do not reread the information.  
ADC data is fresh. Ready for next host data read.  
CL/R  
CU/L  
Capture Left/Right Sample. T his bit indicates whether the PIO capture data waiting is for the right channel ADC  
or left channel ADC. T his bit is read-only.  
0
1
Right channel  
Left channel or mono  
Capture Upper/Lower Byte. T his bit indicates whether the PIO capture data ready is for the upper or lower byte  
of the channel. T his bit is read-only.  
0
1
Lower byte ready  
Upper byte ready or any 8-bit mode  
T he PRDY, CRDY, and INT bits of this status register can change asynchronously to host accesses. T he host may access this regis-  
ter while the bits are transitioning. T he host read may return a zero value just as these bits are changing, for example. A one value  
would not be read until the next host access.  
While the FIFOs have multiple samples available for transfer, the CRDY and PRDY status bits for consecutive samples are approxi-  
mately 320 ns–600 ns apart.  
T his register’s initial state after reset is “1100 1100.”  
REV. C  
–15–  
AD1845  
PIO Data Registers (ADR1:0 = 3)  
AD R1:0  
D ata 7  
CD7  
D ata 6  
CD6  
D ata 5  
CD5  
D ata 4  
CD4  
D ata 3  
CD3  
D ata 2  
CD2  
D ata 1  
CD1  
D ata 0  
CD0  
3
3
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
T he PIO Data Registers are two registers mapped to the same address. Writes send data to the PIO Playback Data Register  
(PD7:0). Reads will receive data from the PIO Capture Data Register (CD7:0).  
During AD1845 initialization, the PIO Playback Data Register cannot be written to and the Capture Data Register is always read  
as “1000 0000 (80h).”  
CD7:0  
PIO Capture Data Register. T his is the control register where capture data is read during programmed I/O data  
transfers.  
T he reading of this register will increment the capture byte state machine so that the following read will be from  
the next appropriate byte in the sample. T he exact byte which is next to be read can be determined by reading the  
Status Register. Once all relevant bytes have been read, the state machine will stay pointed to the last byte of the  
sample until a new sample is received from the ADCs. Once this has occurred, the state machine and Status  
Register will point to the first byte of the sample.  
PD7:0  
PIO Playback Data Register. T his is the control register where playback data is written during programmed I/O  
data transfers.  
Writing data to this register will increment the playback byte tracking state machine so that the following write will  
be to the correct byte of the sample. Once all bytes of a sample have been written, subsequent byte writes to this  
port are ignored. T he state machine is reset when the current sample is sent to the DACs.  
IND IRECT CO NTRO L REGISTER D EFINITIO NS  
T he following control registers are accessed by writing index values to IXA3:0 in the Index Address Register (ADR1:0 = 0) followed  
by a read/write to the Indexed Data Register (ADR1:0 = 1).  
Left Input Control (IXA3:0 = 0)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0
LSS1  
LSS0  
LMGE  
res  
LIG3  
LIG2  
LIG1  
LIG0  
LIG3:0  
res  
Left input gain select. T he least significant bit of this gain select represents +1.5 dB. Maximum gain is +22.5 dB.  
Reserved for future expansion. Always write a zero to this bit.  
LMGE  
LSS1:0  
Left Input Microphone Gain Enable. T his bit will enable the +20 dB gain of the left MIC input signal.  
Left Input Source Select. T hese bits select the input source for the left gain stage preceding the left ADC.  
LSS1  
LSS0  
Left Input Sour ce  
0
0
1
1
0
1
0
1
Left Line Source Selected  
Left Auxiliary 1 Source Selected  
Left Microphone Source Selected  
Left Line Post-Mixed DAC Output Source Selected  
T his register’s initial state after reset is “000x 0000.”  
Right Input Control (IXA3:0 = 1)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1
RSS1  
RSS0  
RMGE  
res  
RIG3  
RIG2  
RIG1  
RIG0  
RIG3:0  
res  
Right Input Gain Select. The least significant bit of this gain select represents +1.5 dB. Maximum gain is +22.5 dB.  
Reserved for future expansion. Always write a zero to this bit.  
RMGE  
RSS1:0  
Right Input Microphone Gain Enable. T his bit will enable the +20 dB gain of the right MIC input signal.  
Right Input Source Select. T hese bits select the input source for the right channel gain stage preceding the right  
ADC.  
REV. C  
–16–  
AD1845  
RSS1 RSS0 Right Input Sour ce  
0
0
1
1
0
1
0
1
Right Line Source Selected  
Right Auxiliary 1 Source Selected  
Right Microphone Source Selected  
Right Post-Mixed DAC Output Source Selected  
T his register’s initial state after reset is “000x 0000.”  
Left Auxiliary # 1 Input Control (IXA3:0 = 2)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
2
LMX1  
res  
res  
LX1A4  
LX1A3  
LX1A2  
LX1A1  
LX1A0  
LX1A4:0  
Left Auxiliary Input # 1 Attenuate Select. T he least significant bit of this gain/attenuate select represents 1.5 dB.  
LX1A4:0 = 0 produces a +12 dB gain. LX1A4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenua-  
tion is –34.5 dB. See Figure 10.  
res  
Reserved for future expansion. Always write zeros to these bits.  
LMX1  
Left Auxiliary # 1 Mute. T his bit, when set, will mute the left channel of the Auxiliary # 1 input source. T his bit  
powers up set.  
T his register’s initial state after reset is “1xx0 1000.”  
Right Auxiliary # 1 Input Control (IXA3:0 = 3)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
3
RMX1  
res  
res  
RX1A4  
RX1A3  
RX1A2  
RX1A1  
RX1A0  
RX1A4:0  
Right Auxiliary Input # 1 Attenuate Select. T he least significant bit of this gain/attenuate select represents  
1.5 dB. RX1A4:0 = 0 produces a +12 dB gain. RX1A4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum  
attenuation is –34.5 dB. See Figure 10.  
res  
Reserved for future expansion. Always write zeros to these bits.  
RMX1  
Right Auxiliary # 1 Mute. T his bit, when set, will mute the right channel of the Auxiliary # 1 input source. T his  
bit powers up set.  
T his register’s initial state after reset is “1xx0 1000.”  
Left Auxiliary # 2 Input Control (IXA3:0 = 4)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
4
LMX2  
res  
res  
LX2A4  
LX2A3  
LX2A2  
LX2A1  
LX2A0  
LX2A4:0  
Left Auxiliary Input # 2 Attenuate Select. T he least significant bit of this gain/attenuate select represents 1.5 dB.  
LX2A4:0 = 0 produces a +12 dB gain. LX2A4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenua-  
tion is –34.5 dB. See Figure 10.  
res  
Reserved for future expansion. Always write zeros to these bits.  
LMX2  
Left Auxiliary # 2 Mute. T his bit, when set to 1, will mute the left channel of the Auxiliary # 2 input source. T his  
bit powers up set.  
T his register’s initial state after reset is “1xx0 1000.”  
Right Auxiliary # 2 Input Control (IXA3:0 = 5)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
5
RMX2  
res  
res  
RX2A4  
RX2A3  
RX2A2  
RX2A1  
RX2A0  
REV. C  
–17–  
AD1845  
RX2A4:0  
Right Auxiliary Input # 2 Attenuate Select. T he least significant bit of this gain/attenuate select represents  
1.5 dB. RX2A4:0 = 0 produces a +12 dB gain. RX2A4:0 = “01000” (8 decimal) produces 0 dB gain.  
Maximum attenuation is –34.5 dB. See Figure 10.  
res  
Reserved for future expansion. Always write zeros to these bits.  
RMX2  
Right Auxiliary # 2 Mute. T his bit, when set, will mute the right channel of the Auxiliary # 2 input source. T his bit  
powers up set.  
T his register’s initial state after reset is “1xx0 1000.”  
Left DAC Control (IXA3:0 = 6)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
6
LDM  
res  
LDA5  
LDA4  
LDA3  
LDA2  
LDA1  
LDA0  
LDA5:0  
Left DAC Attenuate Select. T he least significant bit of this gain/attenuate select represents 1.5 dB. Maximum  
attenuation is –94.5 dB. See Figure 7.  
res  
Reserved for future expansion. Always write a zero to this bit.  
LDM  
Left DAC Mute. T his bit, when set to 1, will mute the left DAC output. T his bit powers up active.  
T his register’s initial state after reset is “1x00 0000.”  
Right DAC Control (IXA3:0 = 7)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
7
RDM  
res  
RDA5  
RDA4  
RDA3  
RDA2  
RDA1  
RDA0  
RDA5:0  
Right DAC Attenuate Select. T he least significant bit of this gain/attenuate select represents 1.5 dB. Maximum  
attenuation is –94.5 dB. See Figure 7.  
res  
Reserved for future expansion. Always write a zero to this bit.  
RDM  
Right DAC Mute. T his bit, when set to 1, will mute the right DAC output. T his bit powers up active.  
T his register’s initial state after reset is “1x00 0000.”  
A5  
A4  
A3  
A2  
A1  
A0  
Mix Gain  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1–1.0 dB  
1–1.5 dB  
1–3.0 dB  
1–4.5 dB  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
1–6.0 dB  
1–7.5 dB  
1–9.0 dB  
–10.5 dB  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
–12.0 dB  
–13.5 dB  
–15.0 dB  
–16.5 dB  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
–78.0 dB  
–79.5 dB  
–81.0 dB  
–82.5 dB  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
–84.0 dB  
–85.5 dB  
–87.0 dB  
–88.5 dB  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
–90.0 dB  
–91.5 dB  
–93.0 dB  
–94.5 dB  
Figure 7. Mix Gain Level Setting: DAC  
–18–  
REV. C  
AD1845  
Clock and Data Form at Register (IXA3:0 = 8)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
8
FMT1  
FMT0  
C/L  
S/M  
CFS2  
CFS1  
CFS0  
CSS  
NOT E: Placing the AD1845 in the Mode Change Enable (MCE) state is not required when changing the sample rate. However,  
changes to FMT [1:0], C/L, and S/M require MCE or setting PEN = 0.  
CSS  
Clock Source Select. T his bit in conjunction with CFS2:0 selects the audio sample rate frequency. See Figure 8  
below. Note: MODE2 allows a wider range of sample rate frequencies to be selected by using the Frequency  
Select Register (refer to Registers 22 and 23).  
CFS2:0  
Clock Frequency Divide Select. T hese bits in conjunction with CSS select the audio sample frequency.  
CFS2  
CFS1  
CFS0  
CSS  
Sam ple Rate  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
8.0  
5.5125  
16.0  
11.025  
kHz  
kHz  
kHz  
kHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
27.42857 kHz  
18.9  
32.0  
22.05  
kHz  
kHz  
kHz  
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
Reserved  
37.8  
Reserved  
44.1  
kHz  
kHz  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
48.0  
33.075  
9.6  
kHz  
kHz  
kHz  
kHz  
6.615  
Figure 8. MODE1 Audio Sam ple Frequency Select  
S/M  
C/L  
Stereo/Mono Select. T his bit determines how the audio data streams are formatted. Selecting stereo will result  
with alternating samples representing left and right audio channels. Mono playback plays the same audio sample  
on both channels. Mono capture only captures data from the left audio channel.  
0
1
Mono  
Stereo  
Companded/Linear Select. T his bit selects between a linear digital representation of the audio signal or a nonlinear,  
companded format for all input and output data. T he type of linear PCM or the type of companded format is  
defined by the FMT bits.  
0
1
Linear PCM  
Companded  
FMT [1:0]  
res  
Format Select. T he bits define the format for all digital audio input and outputs based on the state of the C/L bit.  
See Figure 9 for FMT and C/L bit settings that determine the audio data type format.  
Reserved for future expansion. Always write a zero to this bit.  
T his register’s initial state after reset is “0000 0000.”  
FMT1  
FMT0  
C/L  
Audio D ata Type  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Linear, 8-Bit Unsigned PCM  
µ-Law, 8-Bit Companded  
Linear, 16-Bit T wos-Complement PCM Little Endian  
A-Law, 8-Bit Companded  
Reserved  
Reserved  
Linear, 16-Bit T wos Complement Big Endian  
Reserved  
Figure 9. Digital Audio Data Type  
–19–  
REV. C  
AD1845  
Interface Configuration Register (IXA3:0 = 9)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
9
CPIO  
PPIO  
res  
res  
ACAL  
SDC  
CEN  
PEN  
NOT E: Placing the AD1845 in the Mode Change Enable (MCE) state is not required when changing the CEN and PEN bits in this  
register.  
PEN  
CEN  
SDC  
Playback Enable. T his bit will enable the playback of data in the format selected. T he AD1845 will generate  
PDRQ and respond to PDAK signals when this bit is enabled and PPIO = 0. If PPIO = 1, this bit enables Pro-  
grammed I/O (PIO) playback mode.  
0
1
Playback disabled (PDRQ and PIO Playback Data Register inactive)  
Playback enabled  
Capture Enable. T his bit will enable the capture of data in the format selected. T he AD1845 will generate  
CDRQ and respond to CDAK signals when this bit is enabled and CPIO = 0. If CPIO = 1, this bit enables PIO  
capture mode.  
0
1
Capture disable (CDRQ and PIO Capture Data Register inactive)  
Capture enable  
Single DMA Channel. T his bit will force both capture and playback DMA requests to occur on the Playback  
DMA channel. T he Capture DMA CDRQ pin will be LO. T his bit will allow the AD1845 to be used with only  
one DMA channel. Simultaneous capture and playback cannot occur in this mode. Should both capture and  
playback be enabled (CEN=PEN=1) in the mode, only playback will occur. See “Data and Control T ransfers” for  
further explanation.  
0
1
Dual DMA channel mode  
Single DMA channel mode  
ACAL  
Autocalibrate Enable. T his bit determines whether the AD1845 performs an autocalibration whenever the Mode  
Change Enable (MCE) bit changes from HI to LO. See “Autocalibration” for a description of a complete  
autocalibration sequence. Note that an autocalibration is forced whenever the RESET or PWRDWN pin is  
asserted LO then transitions HI regardless of the state of the ACAL bit.  
0
1
No autocalibration  
Autocalibration after mode change  
res  
Reserved for future expansion. Always write zeros to these bits.  
PPIO  
Playback PIO Enable. T his bit determines whether the playback data is transferred via DMA or PIO.  
0
1
DMA transfers only  
PIO transfers only  
CPIO  
Capture PIO Enable. T his bit determines whether the capture data is transferred via DMA or PIO.  
0
1
DMA transfers only  
PIO transfers only  
T his register’s initial state after reset is “00xx 1000.”  
Pin Control Register (IXA3:0 = 10)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
10  
XCTL1  
XCTL0  
res  
res  
res  
res  
IEN  
INITD  
INIT D  
IEN  
Disable setting the INIT bit after changing the sample rate in MODE1. Otherwise the INIT bit is set HI for  
approximately 200 µs after changing the sample rate.  
0
1
INIT bit is enabled  
INIT bit is disabled  
Interrupt Enable. T his bit enables the interrupt pin. T he Interrupt Pin will go active HI when the number of  
samples programmed in the Base Count Register is reached.  
0
1
Interrupt disabled  
Interrupt enabled  
res  
Reserved for future expansion. Always write zeros to these bits.  
REV. C  
–20–  
AD1845  
XCT L1:0  
External Control. T he state of these bits is reflected on the XCT L1:0 pins of the AD1845.  
0
1
Logic LO on XCT L1:0 pins  
Logic HI on XCT L1:0 pins  
T his register’s initial state after reset is “00xx xx00.”  
Test and Initialization Register (IXA3:0 = 11)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
11  
COR  
PUR  
ACI  
DRS  
ORR1  
ORR0  
ORL1  
ORL0  
ORL1:0  
ORR1:0  
Overrange Left Detect. T hese bits indicate the overrange on the left capture channel. T hese bits change on  
a sample-by-sample basis, and are read-only.  
ORL1 ORL0  
0
0
1
1
0
1
0
1
Less than –1 dB underrange  
Between –1 dB and 0 dB underrange  
Between 0 dB and +1 dB overrange  
Greater than +1 dB overrange  
Overrange Right Detect. T hese bits indicate the overrange on the right capture channel. T hese bits change  
on a sample-by-sample basis, and are read-only.  
ORR1 ORR0  
0
0
1
1
0
1
0
1
Less than –1 dB underrange  
Between –1 dB and 0 dB underrange  
Between 0 dB and +1 dB overrange  
Greater than +1 dB overrange  
DRS  
ACI  
Data Request Status. T his bit indicates the current status of the PDRQ and CDRQ pins of the AD1845.  
0
1
CDRQ and PDRQ are presently inactive (LO)  
CDRQ or PDRQ are presently active (HI)  
Autocalibrate-In-Progress. T his bit indicates the state of autocalibration or a recent exit from Mode Change  
Enable (MCE). T his bit is read-only.  
0
1
Autocalibration is not in progress  
Autocalibration is in progress or MCE was exited within the last 128 sample periods  
PUR  
COR  
Playback Underrun. T his bit is set when the playback FIFO is empty and after the next valid sample has been  
played back. If this condition exists, DACZ determines the DAC playback value. In MODE1, DACZ is always set  
and returns a midscale value.  
Capture Overrun. T his bit is set when the capture FIFO is full and an additional sample has been captured. T he  
sample being read will not be overwritten by the new sample. T he new sample will be ignored. T his bit changes on  
a sample by sample basis.  
T he occurrence of a PUR and/or COR is designated in the Status Register’s Sample Overrun/Underrun (SOUR) bit. T he SOUR bit  
is the logical OR of the COR and PUR bits. T his enables a polling host CPU to detect an overrun/underrun condition while check-  
ing other status bits.  
T his register’s initial state after reset is “0000 0000.”  
Miscellaneous Control Register (IXA3:0 = 12)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
12  
MID  
MODE2  
res  
BUF8  
ID3  
ID2  
ID1  
ID0  
ID3:0  
BUF8  
AD1845 Revision ID. T hese four bits define the revision level of the AD1845. T he AD1845 will have ID =  
“1010.” T hese bits are read-only.  
Parallel Interface Bus T ransceiver Current Buffer Drive. T he AD1845 can be programmed to provide a current  
drive of 16 mA or 8 mA.  
0
1
16 mA current drive.  
8 mA current drive.  
res  
Reserved for future expansion. Always write 0s to these bits.  
REV. C  
–21–  
AD1845  
MODE2  
When the AD1845 is initialized, the MODE2 bit is set to 0, LO, and the AD1845 is register set compatible with  
the AD1848 and the AD1846. Setting the MODE2 bit to 1, HI, enables access to the indirect registers 16  
through 31 which controls the AD1845 Expanded Mode of operation.  
0
1
MODE1: AD1848, AD1846, and CS4248 mode  
MODE2: AD1845 enhanced feature mode  
MID  
Manufacturer ID Bit. T his bit is set to 1.  
T his register’s initial state after reset is “10x0 1010.”  
Digital Mix/Attenuation Control Register (IXA3:0 = 13)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
13  
DMA5  
DMA4  
DMA3  
DMA2  
DMA1  
DMA0  
res  
DME  
DME  
Digital Mix Enable. T his bit will enable the digital mix of the ADC’s output with the DAC’s input. When en-  
abled, the data from the ADCs are digitally mixed with other data being delivered to the DACs regardless of  
whether or not playback is enabled (PEN = 1). If capture is enabled (CEN = 1) and there is a capture overrun  
(COR), then the last sample captured before overrun will be used for the digital mix. If playback is enabled  
(PEN = 1) and there is a playback underrun (PUR), then a midscale zero will be added to the digital mix data if  
DACZ = 1, otherwise, the last valid sample will be repeated.  
0
1
Digital mix disabled (muted)  
Digital mix enabled  
res  
Reserved for future expansion. Always write a zero to this bit.  
DMA5:0  
Digital Mix Attenuation. T hese bits determine the attenuation of the ADC data that is mixed with the DAC in-  
put. Each attenuate step is –1.5 dB ranging from 0 dB to –94.5 dB.  
T his register’s initial state after reset is “0000 00x0.”  
DMA Pla yba ck Ba se Count Register s (IXA3:0 = 14 & 15)  
T he DMA Base Count Registers in the AD1845 simplify integration of the AD1845 in ISA systems. T he ISA DMA controller re-  
quires an external count mechanism to notify the host CPU via interrupt of a full DMA buffer. T he programmable DMA Base  
Count Registers will allow such interrupts to occur.  
T he Base Count Registers contain the number of samples to be transferred before an interrupt is generated on the interrupt (INT)  
pin. T o load, first write a value to the Lower Base Count Register. Writing a value to the Upper Base Register will cause both Base  
Count Registers to load into the Current Count Register. Once AD1845 transfers are enabled, each sample transferred causes the  
Current Count Register to decrement until zero count is reached. T he next sample after zero will generate the interrupt and reload  
the Current Count Register with the values in the Base Count Registers. T he interrupt is cleared by a write to the Status Register.  
T he Host Interrupt Pin (INT ) will go HI during the sample period in which the Current Count Register underflows.  
When using the AD1845 in MODE1 (AD1848 compatible), the Current Count Register is decremented every sample period when  
either the PEN or CEN bit is enabled. T he Current Count Register is decremented in both PIO and DMA data transfer modes.  
Interrupt conditions are generated by Current Count Register underflows in both PIO and DMA transfers.  
Program maximum value to the Upper Base Count Register to avoid receiving DMA count interrupts while operating in PIO mode.  
By enabling MODE2, the AD1845 Expanded Mode, the playback counter is only decremented when a playback sample transfer occurs.  
Upper Base Count Register (IXA3:0 = 14)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
14  
UB7  
UB6  
UB5  
UB4  
UB3  
UB2  
UB1  
UB0  
UB7:0  
Upper Base Count. T his byte is the upper byte of the base count register containing the eight most significant bits  
of the 16-bit base register. Reads from this register return the same value which was written. T he current count  
contained in the counters can not be read.  
T his register’s initial state after reset is “ 0000 0000.”  
REV. C  
–22–  
AD1845  
Lower Base Count Register (IXA3:0 = 15)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
15  
LB7  
LB6  
LB5  
LB4  
LB3  
LB2  
LB1  
LB0  
LB7:0  
Lower Base Count. T his byte is the lower byte of the base count register containing the eight least significant bits  
of the 16-bit base register. Reads from this register return the same value which was written. T he current count  
contained in the counters cannot be read.  
T his register’s initial state after reset is “0000 0000.”  
Expanded Modes (MO D E2 = 1)  
T he following registers are enabled when the AD1845 is operating in MODE2 only.  
Alternate Feature Enable/Left MIC Input Control Register (IXA3:0 = 16)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
16  
OL  
TE  
LMG4  
LMG3  
LMG2  
LMG1  
LMG0  
DACZ  
DACZ  
DAC Zero. When an underrun error occurs, this bit will force the DAC output to midscale.  
0
1
Output previous valid sample  
Output to midscale value  
LMG4:0  
T E  
Left MIC Gain. T he least significant bit of this gain/attenuate select represents 1.5 dB. LMG4:0 = 0 produces  
a +12 dB gain. LMG4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is –34.5 dB.  
See Figure 10.  
T imer Enable. Setting this bit enables the 16-bit programmable timer (see Registers 20 and 21). When the timer  
is enabled, the timer count is reloaded, and interrupts are generated at specified periods on the INT pin. When the  
timer is disabled, the timer stops counting and the INT pin and T I bit are cleared immediately.  
OL  
Output Level. T his bit sets the analog output level. T he line output level may be attenuated by 3 dB.  
0
1
Full scale of 2.0 V p-p (–3 dB)  
Full scale of 2.8 V p-p (0 dB)  
T his register’s initial state after reset is “0001 0001.”  
MIC Mix Enable/Right MIC Input Control Register (IXA3:0 = 17)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
17  
LMME  
RMME  
RMG4  
RMG3  
RMG2  
RMG1  
RMG0  
res  
res  
Reserved for future expansion. Always write zero to this bit.  
RMG4:0  
Right MIC Gain. T he least significant bit of this gain/attenuate select represents 1.5 dB. RMG4:0 = 0 produces a  
+12 dB gain. RMG4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is –34.5 dB.  
See Figure 10.  
RMME  
LMME  
Right MIC Mix Enable. Setting this bit enables the right microphone input to be mixed with the DAC output on  
R_OUT .  
Left MIC Mix Enable. Setting this bit enables the left microphone input to be mixed with the DAC output on  
L_OUT .  
T his register’s initial state after reset is “0001 000x.”  
Left Line Gain, Attenuate, Mute Mix Register (IXA3:0 = 18)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
18  
LLM  
res  
res  
LLG4  
LLG3  
LLG2  
LLG1  
LLG0  
LLG4:0  
res  
Left Line Mix Gain. Allows setting the left line mix gain in thirty-two 1.5 dB steps. See Figure 10 for mix gain  
level setting.  
Reserved for future expansion. Always write zeros to these bits.  
REV. C  
–23–  
AD1845  
LLM  
Left Line Mute. Setting this bit to 1 mutes the left line input into the output mixer.  
T his register’s initial state after reset is “1xx0 1000.”  
Right Line Gain, Attenuate, Mute, Mix Register (IXA3:0 = 19)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
19  
RLM  
res  
res  
RLG4  
RLG3  
RLG2  
RLG1  
RLG0  
RLG4:0  
Right Line Mix Gain. Allows setting the right line mix gain in thirty-two 1.5 dB steps. See Figure 10 for mix  
gain level setting.  
res  
Reserved for future expansion. Always write zeros to these bits.  
RLM  
Right Line Mute. Setting this bit to 1 mutes the right line input into the output mixer.  
T his register’s initial state after reset is “1xx0 1000.”  
A4/G4  
A3/G3  
A2/G2  
A1/G1  
A0/G0  
Mix Gain  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
+12.0 dB  
+10.5 dB  
+9.0 dB  
+7.5 dB  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
+6.0 dB  
+4.5 dB  
+3.0 dB  
+1.5 dB  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
+0.0 dB  
–1.5 dB  
–3.0 dB  
–4.5 dB  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
–6.0 dB  
–7.5 dB  
–9.0 dB  
–10.5 dB  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
–12.0 dB  
–13.5 dB  
–15.0 dB  
–16.5 dB  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
–18.0 dB  
–19.5 dB  
–21.0 dB  
–22.5 dB  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
–24.0 dB  
–25.5 dB  
–27.0 dB  
–28.5 dB  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
–30.0 dB  
–31.5 dB  
–33.0 dB  
–34.5 dB  
Figure 10. Mix Gain Level Setting: AUX1, AUX2, MIC and LINE  
Lower Tim er Bits Register (IXA3:0 = 20)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
20  
TL7  
TL6  
TL5  
TL4  
TL3  
TL2  
TL1  
TL0  
T L7:0  
Lower T imer Bits. T his byte is the lower byte of the timer register containing the eight least significant bits of the  
16-bit register. Reads from this register return the same value which was written. T he current timer value con-  
tained in the counters cannot be read.  
T his register’s initial state after reset is “0000 0000.”  
REV. C  
–24–  
AD1845  
Upper Tim er Bits Register (IXA3:0 = 21)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
21  
TU7  
TU6  
TU5  
TU4  
TU3  
TU2  
TU1  
TU0  
T U7:0  
Upper T imer Bits. T his byte is the upper byte of the timer register containing the eight most significant bits of the  
16-bit register. Reads from this register return the same value which was written. T he current timer value con-  
tained in the counters cannot be read. T he timer counter is determined by the clock source selected (see below).  
Input Frequency  
Divider  
T imer Counter  
24.576 MHz  
14.31818 MHz  
24.000 MHz  
25.000 MHz  
33.000 MHz  
247  
144  
242  
252  
333  
10.050 µs  
10.057 µs  
10.083 µs  
10.080 µs  
10.091 µs  
T his register’s initial state after reset is “0000 0000.”  
Upper Frequency Select Bits Register (IXA3:0 = 22)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
FU3  
D ata 2  
D ata 1  
D ata 0  
22  
FU7  
FU6  
FU5  
FU4  
FU2  
FU1  
FU0  
FU7:0  
Upper Frequency Select Bits. T his register is accessible when FREN is 1. Writing to this register allows the user  
to program the sampling frequency from 4 kHz to 50 kHz in 1 Hz increments. Writing to the Lower and Upper  
Frequency Select Register allows the AD1845 to process audio data using approximately 50,000 different audio  
sample rates. One LSB represents exactly one hertz. Selecting frequencies below 4 kHz or above 50 kHz will  
result in degraded audio performance. Some common sample rates are listed below:  
Quality  
Sampling Frequency  
FU7:0 (hex)  
FL7:0 (hex)  
Voice  
Radio  
T ape  
CD  
8.0 kHz  
0001 1111  
0010 1011  
0101 0110  
1010 1100  
1011 1011  
0100 0000  
0001 0001  
0010 0010  
0100 0100  
1000 0000  
default  
11.025 kHz  
22.05 kHz  
44.1 kHz  
48.0 kHz  
DAT  
T his register’s initial state after reset is “0001 1111.”  
Lower Frequency Select Bits Register (IXA3:0 = 23)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
FL3  
D ata 2  
FL2  
D ata 1  
D ata 0  
23  
FL7  
FL6  
FL5  
FL4  
FL1  
FL0  
FL7:0  
Lower Frequency Select Bits. Writing to the Lower Frequency Select register updates the entire 16-bit frequency register.  
T his register’s initial state after reset is “0100 0000.”  
Capture Playback Tim er Register (IXA3:0 = 24)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
24  
res  
TI  
CI  
PI  
CU  
CO  
PO  
PU  
PU  
PO  
Playback Underrun. T his bit is set when the DAC runs out of data and a sample has been missed.  
Playback Overrun. T his bit is set when the host tries to write data into the FIFO and the write was ignored be-  
cause the FIFO was full.  
CO  
CU  
Capture Overrun. T his bit is set when the ADC has a sample to load into the FIFO, and the data was ignored  
because the capture FIFO was full.  
Capture Underrun. T his bit is set when the host attempts to read from the capture FIFO when it is empty. Under  
these circumstances, the last valid byte is sent to the host.  
PI  
Playback Interrupt. T his bit indicates that there is an interrupt pending from the playback DMA count registers.  
Capture Interrupt. T his bit indicates that there is an interrupt pending from the capture DMA count registers.  
CI  
REV. C  
–25–  
AD1845  
T I  
T imer Interrupt. T his bit indicates that there is an interrupt pending from the timer count registers.  
Reserved for future expansion. Always write zero to this bit.  
res  
Playback, Capture and timer interrupts may be cleared simultaneously by writing to the Status Register. T hese interrupts may be  
cleared individually by writing a “0” to the corresponding bit. Note that the timer interrupt requires a minimum wait period of 10 µs  
after the interrupt is set and before T I is recognized. Use T E to clear the timer interrupt immediately.  
T his register’s initial state after reset is “100x x000.”  
Revision ID Register (IXA3:0 = 25)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
25  
V2  
V1  
V0  
res  
res  
CID2  
CID1  
CID0  
V2:0  
res  
Version Number. Indicates the version of the AD1845.  
Reserved for future expansion. Always write zeros to these bits.  
Chip ID Number.  
CID2:0  
T his register’s initial state after reset is “x000 0000.”  
Mono Control Registers (IXA3:0 = 26)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
26  
MIM  
MOM  
res  
res  
MIA3  
MIA2  
MIA1  
MIA0  
MIA3:0  
Mono Input Attenuation. T he least significant bit represents 3.0 dB attenuation. See Figure 11 to determine  
the attenuation.  
res  
Reserved for future expansion. Always write zeros to these bits.  
Mono Output Mute. M_OUT is muted by setting MOM to 1.  
MOM  
0
1
Mono output not muted  
Mono output muted  
MIM  
Mono Input Mute. M_IN is muted by setting MIM to 1.  
0
1
Mono input not muted  
Mono input muted  
T his register’s initial state after reset is “00xx 0011.”  
MIA3  
MIA2  
MIA1  
MIA0  
MO NO Attenuation  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0.0 dB  
–3.0 dB  
–6.0 dB  
–9.0 dB  
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
–12.0 dB  
–15.0 dB  
–18.0 dB  
–21.0 dB  
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
–24.0 dB  
–27.0 dB  
–30.0 dB  
–33.0 dB  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
–36.0 dB  
–39.0 dB  
–42.0 dB  
–45.0 dB  
Figure 11. Mono Attenuation  
REV. C  
–26–  
AD1845  
Power-Down Control Register (IXA3:0 = 27)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
27  
ADCPWD  
DACPWD  
MIXPWD  
res  
FREN  
res  
res  
res  
res  
Reserved for future expansion. Always write zeros to these bits.  
FREN  
Frequency Select Register Enable. In MODE2, selecting this bit will turn on the Frequency Select Registers (see  
indirect registers 22 and 23) and disable CFS2:0.  
0
1
CFS Active.  
Frequency Select Registers Active, CFS disabled.  
MIXPWD  
DACPWD  
ADCPWD  
Mixer Power Down. T he DAC and the output mixer are powered down, and the DAC sample clock is turned off.  
DAC Power Down. T he DAC is powered down and the DAC sample clock is turned off.  
ADC Power Down. T he ADC is powered down and the ADC sample clock is turned off.  
T his register’s initial state after reset is “000x 0xxx.”  
Capture Data Form at Control Register (IXA3:0 = 28)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
28  
CFMT1  
CFMT0  
CC/L  
CS/M  
res  
res  
res  
res  
NOT E: Changing CFMT [1:0], CC/L, CS/M, requires the Mode Change Enable (MCE) state or setting CEN = 0.  
res  
Reserved for future expansion. Always write zeros to these bits.  
CS/M  
Capture Stereo/Mono Select. Setting this bit determines how the captured audio data will be formatted. In the  
Mono mode, valid information is captured on the “left” channel, and the “right” channel data is not valid.  
0
1
Mono Format  
Stereo Format  
CC/L  
Capture Companding/Linear Select. T his bit is set to determine linear, µ-Law or A-Law companding. See Figure  
12 for CFMT [1:0] and CC/L bit settings that determine the audio data type capture format.  
CFMT [1:0]  
Capture Data Format. T his bit is set to format the data being captured in MODE 2. See Figure 12 for CFMT  
and CC/L bit settings that determine the capture audio data type format.  
T his register’s initial state after reset is “0000 xxxx.”  
CFMT1  
CFMT0  
CC/L  
Audio D ata Type  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Linear, 8-Bit Unsigned PCM  
µ-Law, 8-Bit Companded  
Linear, 16-Bit T wos Complement PCM Little Endian  
A-Law, 8-Bit Companded  
Reserved  
Reserved  
Linear, 16-Bit T wos-Complement Big Endian  
Reserved  
Figure 12. Capture Audio Data Type  
Crystal, Clock Select/Total Power-Down Register (IXA3:0 = 29)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
29  
XFS2  
XFS1  
XFS0  
res  
res  
res  
res  
TOTPWD  
T OT PWD  
T otal Power Down. When T OT PWD = HI, the ADC, DAC, mixer, and voltage reference are powered down, and  
the ADC and DAC sample clocks are turned off. Only the digital interface remains active to allow the host to exit  
the AD1845 from the total power-down state.  
res  
Reserved for future expansion. Always write zeros to these bits.  
REV. C  
–27–  
AD1845  
XFS2:0  
Crystal/Clock Input Frequency Select. On power up or reset, the AD1845 expects a 24.576 MHz input clock. If  
the clock source connected to the AD1845 is different from the default condition, then the clock input must be  
selected using this register. For a detailed explanation see the Power Up and Reset section of the data sheet. Figure  
13 summarizes the valid input clock frequencies. Clock sources with excessive jitter may not yield optimal analog  
performance.  
T his register’s initial state after reset is “000x xxx0.”  
XFS2  
XFS1  
XFS0  
Input Fr equency  
24.576 MHz  
14.31818 MHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
24.000  
25.000  
33.000  
MHz  
MHz  
MHz  
Reserved  
Reserved  
Reserved  
Figure 13. Input Frequency Selection  
Capture Upper Base Count Register (IXA3:0 = 30)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
30  
CUB7  
CUB6  
CUB5  
CUB4  
CUB3  
CUB2  
CUB1  
CUB0  
CUB7:0  
Capture Upper Base Count. T his byte is the upper byte of the base count register containing the eight most sig-  
nificant bits of the second 16-bit base register. Reads from this register return the same value that was written.  
T he current count contained in the counters cannot be read.  
T his register’s initial state after reset is “0000 0000.”  
Capture Lower Base Count Register (IXA3:0 = 31)  
IXA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
31  
CLB7  
CLB6  
CLB5  
CLB4  
CLB3  
CLB2  
CLB1  
CLB0  
CLB7:0  
Capture Lower Base Count. T his byte is the lower byte of the base count register containing the eight least signifi-  
cant bits of the second 16-bit base register. Reads from this register return the same value that was written. T he  
current count contained in the counters cannot be read.  
T his register’s initial state after reset is “0000 0000.”  
REV. C  
–28–  
AD1845  
TIME  
D ATA AND CO NTRO L TRANSFERS  
T he AD1845 SoundPort Stereo Codec supports a DMA re-  
quest/grant architecture for transferring data with the host com-  
puter bus. One or two DMA channels can be supported.  
Programmed I/O (PIO) mode is also supported for control  
register accesses and for applications lacking DMA control.  
PIO transfers can be made on one channel while the other is  
performing DMA. T ransfers to and from the AD1845  
SoundPort Codec are asynchronous relative to the internal data  
conversion clock. T ransfers are buffered by FIFOs located in  
the capture and playback paths.  
SAMPLE 3  
SAMPLE 3  
SAMPLE 2  
SAMPLE 2  
SAMPLE 1  
SAMPLE 1  
RIGHT MS  
RIGHT LS  
LEFT MS  
LEFT LS  
BYTES 3 AND 4  
BYTES 1 AND 2  
Figure 17. 16-Bit Stereo Data Stream Sequencing, Little  
Endian  
TIME  
SAMPLE 6 SAMPLE 5 SAMPLE 4 SAMPLE 4 SAMPLE 3 SAMPLE 2 SAMPLE 1  
D ata O r der ing  
T he number of byte-wide transfers required depends on the  
data format selected. T he AD1845 is designed for “little and  
big endian” formats. In little endian format, the least significant  
byte (i.e., occupying the lowest memory address) gets trans-  
ferred first. T herefore, 16-bit data transfers require first trans-  
ferring the least significant bits [7:0] and then transferring the  
most significant bits [15:8], where Bit 15 is the most significant  
bit in the word. In big endian format, byte ordering for the most  
significant (MS) byte and least significant (LS) byte are swapped.  
LS  
MS  
LS  
MS  
BYTES 3 AND 4  
BYTES 1 AND 2  
Figure 18. 16-Bit Mono Data Stream Sequencing, Big  
Endian  
TIME  
SAMPLE 1  
SAMPLE 3  
SAMPLE 3  
SAMPLE 2  
SAMPLE 2  
SAMPLE 1  
In addition, left channel data is always transferred before right  
channel data with the AD1845. T he following figures should  
make these requirements clear.  
RIGHT LS  
RIGHT MS  
LEFT LS  
LEFT MS  
TIME  
BYTES 3 AND 4  
BYTES 1 AND 2  
SAMPLE 6  
SAMPLE 5  
SAMPLE 4  
SAMPLE 3  
SAMPLE 2  
SAMPLE 1  
Figure 19. 16-Bit Stereo Data Stream Sequencing, Big  
Endian  
MONO  
BYTE 4  
MONO  
MONO  
BYTE 2  
MONO  
BYTE 1  
FIFO  
BYTE 3  
T he AD1845 includes two 16-sample deep FIFOs. T he FIFOs  
are built into the capture and playback paths and are completely  
transparent to the user and require no programming. T he  
FIFOs are active in MODE1 and MODE2.  
Figure 14. 8-Bit Mono Data Stream Sequencing  
TIME  
T he AD1845 maintains a continuous playback stream by re-  
questing data from the host until the FIFO located in the play-  
back path is full. As the FIFO empties, new samples are  
requested to keep the playback FIFO full. In the event that the  
FIFO runs out of data and DACZ is reset to “0,” the last valid  
sample will be continuously played back. If DACZ is “1,” the  
AD1845 will output a midscale value.  
SAMPLE 3  
SAMPLE 3  
SAMPLE 2  
SAMPLE 2  
SAMPLE 1  
SAMPLE 1  
RIGHT  
BYTE 4  
LEFT  
RIGHT  
BYTE 2  
LEFT  
BYTE 3  
BYTE 1  
Figure 15. 8-Bit Stereo Data Stream Sequencing  
T he FIFO located in the capture data path attempts to stay  
empty by making requests of the host every sample period that it  
contains valid data. When the host system cannot respond  
during the same sample period, the capture FIFO starts filling,  
and avoids a loss of data in the audio data stream.  
TIME  
SAMPLE 1  
SAMPLE 6  
SAMPLE 5  
SAMPLE 4  
SAMPLE 3  
SAMPLE 2  
LS  
MS  
LS  
MS  
D ata Bus D r iver s  
T he AD1845 has built-in 8 or 16 mA bus drivers for interfacing  
to the ISA bus. T he drivers reduce the need for the off-chip  
74_245 bus transceiver buffers in many applications. If higher  
drive capability is required, 24 mA for example, the AD1845  
generates the appropriate direction and enable signals. See  
Figure 1 and refer to the Applications Circuits section of the  
data sheet.  
BYTES 3 AND 4  
BYTES 1 AND 2  
Figure 16. 16-Bit Mono Data Stream Sequencing, Little  
Endian  
Contr ol and P r ogr am m ed I/O (P IO ) Tr ansfer s  
T his simpler mode of transfers is used both for control register  
accesses and programmed I/O. T he 37 control and PIO data  
registers cannot be accessed via DMA transfers. Playback PIO  
REV. C  
–29–  
AD1845  
CDRQ/PDRQ  
OUTPUTS  
is activated when both Playback Enable (PEN) is set and Play-  
back PIO (PPIO) is set. Capture PIO is activated when both  
Capture Enable (CEN) is set and Capture PIO (CPIO) is set.  
See Figures 20 and 21 for the detailed timing of the control  
register/PIO transfers. T he RD and WR signals are used to  
define the actual read and write cycles, respectively. T he host  
holds CS LO during these transfers. T he DMA Capture Data  
Acknowledge (CDAK) and Playback Data Acknowledge  
(PDAK) must be held inactive, i.e., HI.  
tSUDK1  
tCSSU  
tSUDK2  
tCSHD  
PDAK INPUT  
CS INPUT  
tDBDL  
DBEN OUTPUT  
HI  
DBDIR OUTPUT  
tSTW  
WR INPUT  
tDHD2  
For read/capture cycles, the AD1845 will place data on the  
DAT A7:0 lines while the host is asserting the read strobe, RD,  
by holding it LO. For write/playback, the host must place data  
on the DAT A7:0 pins while strobing the WR signal LO. T he  
AD1845 latches the write/playback data on the rising edge of  
the WR strobe.  
tWDSU  
DATA7:0  
INPUTS  
tADHD  
tADSU  
DATA1:0  
INPUTS  
Figure 21. Control Register/PIO Write Cycle  
When using PIO data transfers, the Status Register must be  
polled to determine when data should be transferred. Note that  
the ADC capture data will be ready (CRDY HI) from the previ-  
ous sample period shortly before the DAC playback data is  
ready (PRDY HI) for the next sample period. T he user should  
not wait for both ADCs and DACs to become ready before  
initiating data transfers. Instead, as soon as capture data is  
ready, it should be read; as soon as the DACs are ready, play-  
back data should be written.  
Acknowledge signals cause the AD1845 to perform DMA trans-  
fers. T he input address lines, ADR1:0, are ignored. Data is  
transferred between the proper internal sample registers.  
T he read strobe (RD) and write strobe (WR) delimit valid data  
for DMA transfers. Chip select (CS) is a “don’t care”; its state  
is ignored by the AD1845.  
T he AD1845 may assert the Data Request signals, CDRQ and  
PDRQ, at any time. Once asserted, these signals will remain  
active HI until the corresponding DMA cycle occurs with the  
host’s Data Acknowledge signals. T he Data Request signals will  
be deasserted after the falling edge of the final RD or WR strobe  
in the transfer of a sample, which typically consists of multiple  
bytes. See “Data Ordering” above for a definition of “sample.”  
Values written to the XCT L1:0 bits in the Pin Control Register  
(IXA3:0 = 10) will be reflected in the state of the XCT L1:0  
external output pins. T his feature allows a simple method for  
signaling or software control of external logic. Changes in state  
of the external XCT L pins will occur within one sample period.  
Because their change is referenced to the internal sample clock,  
no useful timing diagram can be constructed.  
DMA transfers may be independently aborted by resetting the  
Capture Enable (CEN) and/or Playback Enable (PEN) bits in  
the Interface Configuration Register. T he current capture  
sample transfer will be completed if a capture DMA is termi-  
nated. T he current playback sample transfer must be completed  
if a playback DMA is terminated. If CDRQ and/or PDRQ are  
asserted HI while the host is resetting CEN and/or PEN, the  
request must be acknowledged. T he host must assert CDAK  
and/or PDAK LO and complete a final sample transfer.  
D IRECT MEMO RY ACCESS (D MA) TRANSFERS  
T he second type of bus cycle supported by the AD1845 are  
DMA transfers. Both dual channel and single channel DMA  
operations are supported. T o enable Playback DMA transfers,  
playback enable (PEN) must be set and PPIO cleared. T o  
enable Capture DMA transfers, capture enable (CEN) must be  
set and CPIO cleared. During DMA transfers, the AD1845  
asserts HI the Capture Data Request (CDRQ) or the Playback  
Data Request (PDRQ) followed by the host’s asserting LO  
the DMA Capture Data Acknowledge (CDAK) or Playback  
Data Acknowledge (PDAK), respectively. The hosts asserted  
Single-Channel D MA  
Single-Channel DMA mode allows the AD1845 to be used in  
systems with only a single DMA channel. It is enabled by set-  
ting the SDC bit in the Interface Configuration Register. All  
captures and playbacks take place on the playback channel.  
Obviously, the AD1845 cannot perform a simultaneous capture  
and playback in Single-Channel DMA mode.  
CDRQ/PDRQ  
OUTPUTS  
tSUDK1  
tCSSU  
tSUDK2  
tCSHD  
CDAK INPUT  
CS INPUT  
Playback will occur in Single-Channel DMA mode exactly as it  
does in T wo-Channel mode. Capture, however, is diverted to  
the playback channel which means that the capture data request  
occurs on the PDRQ pin and the capture data acknowledge  
must be received on the PDAK pin. T he CDRQ pin will re-  
main inactive LO. Any inputs to CDAK will be ignored.  
tDBDL  
tSTW  
DBEN & DBDIR  
OUTPUTS  
RD INPUT  
tRDDV  
tDHD1  
tADHD  
Playback and capture are distinguished in Single-Channel DMA  
mode by the state of the playback enable (PEN) or capture  
enable (CEN) control bits. If both PEN and CEN are set in  
Single-Channel DMA mode, playback will be presumed.  
DATA7:0  
OUTPUTS  
tADSU  
DATA1:0  
INPUTS  
T o avoid confusion of the origin of a request when switching  
between playback and capture in Single-Channel DMA mode,  
both CEN and PEN should be disabled and all pending re-  
quests serviced before enabling the alternative enable bit.  
Figure 20. Control Register/PIO Read Cycle  
REV. C  
–30–  
AD1845  
ISA BUS BCLK  
Switching between playback and capture in Single-Channel  
DMA mode does not require changing the PPIO and CPIO bits  
or passing through the Mode Change Enable state except for  
initial setup. For setup, assign zeros to both PPIO and CPIO.  
T his configures both playback and capture for DMA. Following  
setup, switching between playback and capture can be effected  
entirely by setting and clearing the PEN and CEN control bits,  
a technique which avoids having to enter Mode Change Enable.  
CDRQ /PDRQ  
OUTPUTS  
CDAK/PDAK  
INPUTS  
tBWDN  
RD OR WR  
INPUTS  
RIGHT/  
HIGH BYTE  
LEFT/  
LOW BYTE  
D ual-Channel D MA  
DATA7:0  
T he AD1845 is designed to support full duplex DMA operation  
by allowing simultaneous capture and playback. T he Dual-  
Channel DMA feature enables playback and capture DMA  
requests and acknowledges to occur on separate DMA channels.  
Capture and playback are enabled and set for DMA transfers.  
In addition, Dual-Channel DMA must be set (SDC = 0). It is  
not necessary to enter MCE (Mode Change Enable) to change  
PEN and CEN (Playback and Capture Enable).  
Figure 24. 8-Bit Stereo or 16-Bit Mono DMA Cycle  
ISA BUS BCLK  
CDRQ /PDRQ  
OUTPUTS  
CDAK/PDAK  
INPUTS  
tBWDN  
D MA Tim ing  
RD OR WR  
Below, timing parameters are shown for 8-Bit Mono Sample  
Read/Capture and Write/Playback DMA transfers in Figures 22  
and 23. T he same timing parameters apply to multi-byte trans-  
fers. T he relationship between timing signals is shown in Fig-  
ures 24 and 25.  
INPUTS  
LOW  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
HIGH  
BYTE  
DATA7:0  
LEFT  
SAMPLE  
RIGHT  
SAMPLE  
T he Host Interrupt Pin (INT ) will go HI after a sample transfer  
in which the Current Count Register underflows.  
Figure 25. 16-Bit Stereo DMA Interrupt  
D MA Inter r upt  
Writing to the internal 16-bit Base Count Register sets up the  
count value for the number of samples to be transferred. Note  
that the number of bytes transferred for a given count will be a  
function of the selected global data format. T he internal Cur-  
rent Count Register is updated with the current contents of the  
Upper and Lower Base Count Registers when a write occurs to  
the Upper Base Count Register.  
ISA BUS BCLK  
CDRQ OUTPUT  
tDRHD  
tDKSU  
CDAK INPUT  
tDKHDb  
tDBDL  
DBEN & DBDIR  
OUTPUTS  
T he Current Count Register cannot be read by the host. Read-  
ing the Base Count Registers will only read back the initializa-  
tion values written to them.  
tSTW  
RD INPUT  
tDHD1  
tRDDV  
DATA7:0  
T he Current Count Register decrements by one after every  
sample transferred. An interrupt event is generated after the  
Current Count Register is zero and an additional playback  
sample is transferred. T he INT bit in the Status Register always  
reflects the current internal interrupt state defined above. T he  
external INT pin will only go active HI if the Interrupt Enable  
(wIEN) bit in the Interface Configuration Register is set. If the  
IEN bit is zero, the external INT pin will always stay LO, even  
though the Status Register’s INT bit may be set.  
OUTPUTS  
Figure 22. 8-Bit Mono DMA Read/Capture Cycle  
ISA BUS BCLK  
PDRQ OUTPUT  
tDRHD  
tDKSU  
PDAK  INPUT  
tDKHDa  
tDSDL  
DBEN OUTPUT  
HI  
DBDIR OUTPUT  
tSTW  
WR INPUT  
tDHD2  
tWDSU  
DATA7:0  
OUTPUTS  
Figure 23. 8-Bit Mono DMA Write/Playback Cycle  
REV. C  
–31–  
AD1845  
P O WER-UP AND RESET  
H ar dwar e Contr olled States  
The PWRDWN and RESET pin should be held in the active LO  
state when power is first applied to the AD1845. The AD1845s  
initialization commences when PWRDWN and RESET have both  
been deasserted (HI). While initializing, the AD1845 ignores all  
writes and all reads will yield “1000 0000 (80h).” At the conclu-  
sion of initialization, all registers will be set to their default values as  
listed in Figure 5. When CDAK and PDAK are inactive during  
power-up or reset, the conclusion of the initialization period,  
after approximately 512 ms, can be detected by polling the  
index register for some value other than “1000 0000 (80h).”  
T he hardware power-down states are accessed by bringing the  
PWRDWN or RESET pin LO. Either of these signals place the  
AD1845 into the maximum power conservation mode. Bringing  
the PWRDWN or RESET pin HI will power-up the codec in  
approximately 512 ms (see the Power-Up and Reset section of  
this data sheet).  
Power-Down: PWRDWN immediately puts the AD1845 into  
its lowest power-down state. T he AD1845s parallel inter-  
face will not function and all bidirectional signal lines will be  
in a high-impedance state.  
Upon power-up the AD1845 enters the Mode Change Enable  
(MCE) state. In the default condition, the AD1845 expects to  
receive a 24.576 MHz input clock source. T o change the selec-  
tion of the current or default input clock source, follow the steps  
listed below:  
Reset: RESET powers down the AD1845 gradually to its  
lowest power-down state. T he AD1845 performs a se-  
quenced power-down that eliminates audible effects from the  
DACs output. T he XT AL1 input must be clocked for the  
minimum duration of the RESET pulsewidth. T he  
AD1845s parallel interface will not function and all bidirec-  
tional signal lines will be in a high-impedance state. Note:  
the clock must operate during the software or hardware  
power-down process.  
Wait for the AD1845 to initialize.  
Set the MODE2 bit to 1.  
Enter the MCE state, write to the Crystal/Clock Input Fre-  
quency Select bits (XFS2:0) to select the desired frequency.  
Softwar e Contr olled States  
T he AD1845 will now resynchronize its internal states to the  
new clock. Writes to the AD1845 will be ignored. Poll the  
index register for some value other than “1000 0000 (80h).”  
T o enter the T otal Power-Down mode requires entering the  
Mode Change Enable (MCE) state. After entering MCE, the  
T otal Power-Down mode can be accessed by writing a “1” to  
the T OT PWD bit in the T otal Power-Down Register. Exiting  
the T otal Power-Down mode (writing a “0” to the T OT PWD  
bit in the T otal Power-Down Register) will initialize the  
AD1845 in approximately 512 ms (see the Power-Up and Reset  
section of this data sheet).  
Clear the MCE bit.  
AD VANCED P O WER-D O WN MO D ES  
T he AD1845 has eight Advanced Power-Down Modes available  
at any time. T he user can control these power-down modes  
through hardware by asserting the PWRDWN and RESET pins  
or through software by writing to the Power-Down and the  
T otal Power-Down Control Registers. Figure 26 summarizes  
the power-down delay, power-up delay, and power dissipation  
for each power-down mode. A priority listing and description of  
the power-down modes follows. Note that the hardware con-  
trolled Power-Down and Reset modes take precedence over the  
software controlled power-down states.  
Total Power-Down: In the T otal Power-Down mode the  
ADC, DAC, Mixer, and voltage reference are turned off,  
but the digital interface remains active awaiting power-up.  
All ADC and DAC data is flushed including data in the  
capture and playback FIFOs.  
T o enter the software controlled power-down states in the  
Power-Down Control Register, write a “1” to the control bits.  
Advanced  
P ower-D own  
PWRDWN RESET TO TP WD AD CP WD D ACP WD MIXP WD P ower-D own P ower-Up  
P ower  
Mode  
P in  
P in  
Bit  
Bit  
Bit  
Bit  
D elay*  
D elay*  
D issipation  
Operating  
HI  
HI  
0
0
0
0
x
x
600 mW  
1. Power-Down  
2. Reset  
3. T otal Power-Down HI  
4. Standby HI  
5. Mixer Power-Down HI  
6. Mixer Only HI  
LO  
HI  
x
x
x
1
0
0
0
0
0
x
x
x
1
0
1
1
0
x
x
x
x
x
1
0
1
x
x
x
1
1
0
0
0
0 s  
512 ms  
512 ms  
512 ms  
1/FS  
1/FS  
1/FS  
10 mW  
10 mW  
LO  
HI  
HI  
HI  
HI  
HI  
HI  
3 ms  
3 ms  
1/FS  
1/FS  
1/FS  
1/FS  
1/FS  
150 mW  
180 mW  
350 mW  
260 mW  
400 mW  
425 mW  
7. ADC Power-Down HI  
8. DAC Power-Down HI  
1/FS  
1/FS  
“x” = Dont Care  
*Values shown are derived using a 24.576 MHz input clock source.  
All values are proportional to the input clock source.  
Figure 26. Advanced Power-Down Mode Sum m ary  
REV. C  
–32–  
AD1845  
T he AD1845 performs a sequenced power-down that eliminates  
audible effects from the DACs output, and saves the codec’s  
internal operating state. Clearing the bits (writing a “0” to the  
control bits) returns the AD1845 from the power-down state  
and begins the initialization sequence. T he AD1845 exits the  
power-down mode within 1 sample period. However, an  
additional 128 sample periods are required to unmute the out-  
puts and restore the internal settings to the pre-Power-Down  
operating state.  
Clear the Mode Change Enable (MCE) bit.  
• T he Autocalibrate-In-Progress (ACI) bit will remain HI for  
384 sample periods. Poll the ACI bit until it transitions from  
HI to LO.  
• Set desired gain/attenuation/mute and digital mix values.  
During the autocalibration sequence, data output from the  
ADCs is meaningless. Inputs to the DACs are ignored. Even if  
the user specified the muting of all analog outputs, near the end  
of the autocalibration sequence, dc analog outputs very close to  
VREF will be produced at the line output.  
Standby: Entering the Standby mode places the ADC, DAC  
and the Mixer into a low power state, and forces all outputs  
to be muted. Standby turns off all internal digital and analog  
circuitry with the exception of the digital interface and the  
voltage reference. All ADC and DAC data is flushed includ-  
ing data in the capture and playback FIFOs.  
CH ANGING SAMP LE RATES  
In MODE1 the AD1845 can change sample rates by entering  
the Mode Change Enable state or writing directly to the Clock  
and Data Format Register. In MODE2, the AD1845 changes  
sample rates by writing directly to the Upper and Lower Fre-  
quency Select Register. Please refer to the following examples  
for changing the sample rate.  
Mixer Power-Down: Entering the Mixer Power-Down mode,  
causes both the mixer and the DAC circuitry to be turned  
off. All DAC data is flushed including data in the playback  
FIFO. In this mode the mixer is off and the AD1845 is  
muted, but the ADC remains functional.  
T o change the selection of the current sample rate by entering  
the Mode Change Enable state requires the sequence which is  
summarized as follows (this is the same sequence used by the  
AD1848, AD1846, CS4248, and CS4231):  
Mixer Only: T he Mixer Only mode is initiated by powering  
down both the ADC and DAC, leaving the analog mixer and  
the digital interface active. MIC, LINE, AUX1, AUX2, and  
M_IN can be mixed in the analog domain on the AD1845  
outputs. All ADC and DAC data is flushed including data in  
the capture and playback FIFOs.  
• Set the Mode Change Enable (MCE) bit.  
• In a single write cycle, change the Clock Frequency Divide  
Select (CFS2:0) and/or the Clock Source Select (CSS).  
ADC Power-Down: Entering the ADC Power-Down mode,  
causes the ADC digital and analog engines to be turned off.  
All ADC data is flushed including data in the capture FIFO  
and the AD1845 is rendered deaf. T he input programmable  
gain amplifier (PGA) is also shut down. T he DAC and  
mixer remain active allowing the AD1845 to continue to  
playback and mix samples.  
• T he AD1845 now needs to resynchronize its internal states to  
the new clock. Writes to the AD1845 will be ignored. Reads  
will produce “1000 0000 (80h)” until the resynchronization is  
complete. Poll the Index Register until something other than  
this value is returned.  
Clear the Mode Change Enable (MCE) bit.  
• If ACAL is set, follow the procedure described in  
“Autocalibration” above.  
DAC Power-Down: Entering the DAC Power-Down mode  
suspends the DAC digital and analog engines, and all DAC  
data is flushed including data in the playback FIFO. How-  
ever, the mixer and ADC are functional allowing the  
AD1845 to continue to capture and mix samples.  
• Wait 128 sample cycles or poll the ACI bit until it transitions  
LO.  
• Set to desired gain/attenuation values, and unmute DAC  
outputs (if muted).  
AUTO CALIBRATIO N  
Alternatively, the AD1845 can be programmed to change the  
sample rate selection “on the fly” without entering the Mode  
Change Enable Sequence. T he following sequence applies to  
the AD1845 operating in MODE1 or MODE2.  
T he AD1845 calibrates the ADCs and DACs for greater accu-  
racy by minimizing dc offsets. Upon power-up or after RESET,  
the AD1845 automatically performs an autocalibration after the  
first return from the Mode Change Enable state, regardless of  
the state of the ACAL bit. Autocalibration can be forced when  
the AD1845 returns from the Mode Change Enable state and  
the ACAL bit in the Interface Configuration register has been  
set. If the ACAL bit is not set, the RAM normally containing  
ADC and DAC offset compensations will be saved, retaining  
the offsets of the most recent autocalibration.  
• In a single write cycle, change the Clock Frequency Divide  
Select (CFS2:0) and/or the Clock Source Select (CSS). For  
compatibility reasons, the AD1845 will send out “1000 0000  
(80h)” for approximately 200 µs. Even this short wait can be  
disabled by setting the INIT D bit. When the INIT D bit is set,  
the AD1845 is ready immediately after changing the sample  
rate using CFS and CSS.  
T he completion of autocalibration can be determined by polling  
the Autocalibrate-In-Progress (ACI) bit in the T est and Initial-  
ization Register, which will be set during autocalibration. T rans-  
fers enabled during autocalibration do not begin until the  
completion of autocalibration.  
• T he AD1845 now needs to resynchronize its internal states to  
the new clock. Writes to the AD1845 will be ignored. Reads  
will produce “1000 0000 (80h)” until the resynchronization is  
complete. Poll the Index Register until something other than  
this value is returned.  
T he following summarizes the procedure for autocalibration:  
• Set the Mode Change Enable (MCE) bit.  
• Set the Autocalibration (ACAL) bit.  
• Set to desired gain/attenuation values, and unmute DAC  
outputs (if muted).  
REV. C  
–33–  
AD1845  
1F  
3.3k⍀  
In the Expanded Mode, MODE2, the AD1845 can be pro-  
grammed to change the sample rate selection in 1 Hz incre-  
ments “on the fly” and without entering the Mode Change  
Enable Sequence. T he following sequence applies to the  
AD1845 in MODE2 only:  
L_LINE  
R_LINE  
560pF  
NPO  
4.3k⍀  
1F  
3.3k⍀  
• Enable the Frequency Select Register by setting FREN to 1.  
560pF  
NPO  
4.3k⍀  
Change the Lower and Upper Frequency Select Register,  
FU7:0 and FL7:0.  
AP P LICATIO NS CIRCUITS  
Figure 27. 2 V rm s Line-Level Input Circuit for LINE Inputs  
T he AD1845 Stereo Codec has been designed to require a  
minimum of external circuitry. T he recommended circuits are  
shown in Figures 27 through 35.  
1F  
3.3k⍀  
L_AUX1  
L_AUX2  
M_IN  
1000pF  
NPO  
4.3k⍀  
See Figure 1 for an illustration of the connection between the  
AD1845 SoundPort Codec and the Industry Standard Archi-  
tecture (ISA) computer bus, also known as the “PC-AT bus.”  
Note that the 74_245 transceiver receives its enable and direc-  
tion signals directly from the Codec. Analog Devices recom-  
mends using the “slowest” 74_245 adequately fast to meet all  
AD1845 and computer bus timing and drive requirements. So  
doing will minimize switching transients of the 74_245. T his in  
turn will minimize the digital feed through effects of the trans-  
ceiver when driving the AD1845, which can cause the audio  
noise floor to rise. In most applications, the 74_245 can be  
omitted and the AD1845 connected directly ISA bus taking  
advantage of the AD1845’s built-in 16 mA drivers.  
1F  
3.3k⍀  
R_AUX1  
R_AUX2  
1000pF  
NPO  
4.3k⍀  
Figure 28. 2 V rm s Line-Level Input Circuit for M_IN and  
AUX Inputs  
T he AD1845 codec contains an optional +20 dB gain block to  
accommodate condenser microphones. Particular system re-  
quirements will depend upon the characteristics of the intended  
microphone. Figure 29 illustrates one example of how an elec-  
tret condenser mike requiring phantom power could be con-  
nected to the AD1845. VREF is shown buffered by an op amp; a  
transistor like a 2N4124 will also work fine for this purpose.  
Note that if a battery-powered microphone is used, the buffer  
and R2s are not needed. T he values of R1, R2, and C should be  
chosen in light of the mic characteristics and intended gain.  
T ypical values for these might be R1 = 20 k, R2 = 2 k, and  
C = 220 pF.  
Industry-standard compact disc “line-levels” are 2 V rms cen-  
tered around analog ground. (For other audio equipment, “line  
level” is much more loosely defined.) T he AD1845 SoundPort  
is a +5 V only powered device. Line level voltage swings for the  
AD1845 are defined to be 1 V rms for a sine wave ADC input  
and user selectable 0.707 V rms or 1 V rms for a sine wave  
DAC output. T hus, 2 V rms input analog signals must be  
attenuated and either centered around the reference voltage  
intermediate between 0 V and +5 V or ac coupled. T he VREF  
pin will be at this intermediate voltage, nominally 2.25 V. It has  
limited drive but can be used as a voltage datum to an op amp  
input. Note, however, that dc-coupled inputs are not recom-  
mended, as they provide no performance benefits with the  
AD1845 architecture. Furthermore, dc offset differences be-  
tween multiple dc-coupled inputs create the potential for  
“clicks” when changing the input mixer selection.  
C
LEFT ELECTRET  
R1  
CONDENSER  
MICROPHONE  
INPUT  
1F  
5k⍀  
0.33F  
L_MIC  
1/2 SSM2135  
OR AD820  
R2  
R2  
V
REF  
1/2 SSM2135 OR AD820  
C
A circuit for 2 V rms mono, line-level inputs and auxiliaries is  
shown in Figure 27 and Figure 28. Note that this is a divide-  
by-two resistive dividers considering the codec input imped-  
ance. T he input resistor and 560 pF (1000 pF) capacitor  
provides the single-pole of antialias filtering required for the  
ADCs. If line-level inputs are already at the 1 V rms levels  
expected by the AD1845, the resistors in parallel with the  
560 pF (1000 pF) capacitors can be omitted. If the application  
does not route the AUX2 inputs to the ADCs, then no antialias  
filtering is required (only the 1 µF ac coupling capacitor).  
R1  
1F  
5k⍀  
0.33F  
R_MIC  
RIGHT ELECTRET  
CONDENSER  
MICROPHONE  
INPUT  
1/2 SSM2135  
OR AD820  
V
REF  
Figure 29. “Phantom -Powered” Microphone Input  
Circuit  
REV. C  
–34–  
AD1845  
XTAL1O  
XTAL1I  
Figure 30 shows ac-coupled line outputs. T he resistors are used  
to center the output signals around analog ground. If dc-cou-  
pling is desired, VREF could be used with op amps as mentioned  
above, if desired.  
20–64pF  
20–64pF  
24.576 MHz  
Figure 34. Crystal Connections  
1F  
Note: XT AL2I and XT AL2O, are not used in the AD1845.  
L_OUT  
Analog Devices also recommends a pull-down resistor for  
47k⍀  
PWRDWN.  
Good, standard engineering practices should be applied for  
power-supply decoupling. Decoupling capacitors should be  
placed as close as possible to package pins. If a separate analog  
power supply is not available, we recommend the circuit shown  
in Figure 35 for using a single +5 V supply. Ferrite beads suffice  
for the inductors shown (typically 600 at 100 MHz). T his  
circuitry should be as close to the supply pins as is practical.  
1F  
R_OUT  
47k⍀  
Figure 30. Line Output Connections  
A circuit for headphone drive is illustrated in Figure 31. Drive is  
supplied by +5 V operational amps. T he circuit shown ac  
couples the headphones to the line output.  
FB  
+5V  
SUPPLY  
+
0.1F  
10F  
0.1F  
0.1F  
0.1F  
0.1F  
8.66k⍀  
10k⍀  
L_OUT  
V
V
HEADPHONE  
LEFT  
DD  
DD  
+
470F  
10F  
V_REF  
R_OUT  
SSM-2135  
V
HEADPHONE  
RIGHT  
DD  
10k⍀  
FB  
470F  
+
10F  
0.1F  
0.1F  
8.66k⍀  
Figure 31. Headphone Drive Connections  
V
V
CC  
CC  
Figure 32 illustrates reference bypassing. VREF_F should only be  
connected to its bypass capacitors.  
Figure 35. Recom m ended Power Supply Bypassing  
V
V
GRO UND ING AND LAYO UT  
REF_F  
REF  
1.0µF  
10µF  
10µF  
Analog Devices recommends a split ground plane as shown in  
Figure 36. T he analog plane and the digital plane are connected  
directly under the AD1845. Splitting the ground plane directly  
under the SoundPort Codec is optimal because analog pins will  
be located above the analog ground plane and digital pins will  
be located directly above the digital ground plane for the best  
isolation.  
Figure 32. Voltage Reference Bypassing  
Figure 33 illustrates signal-path filtering capacitors, L_FILT  
and R_FILT . T he AD1845 must use 1.0 µF capacitors; the  
AD1845 will not perform properly with 1000 pF capacitors.  
T he 1.0 µF capacitors required by the AD1845 can be of any  
type.  
Other schemes may also yield satisfactory results. If the split  
ground plane recommended here is not possible, the AD1845  
should be entirely over the analog ground plane with the op-  
tional 74_245 transceiver over the digital plane.  
L_FILT  
R_FILT  
Some manufacturers of compatible devices differentiate between  
digital supply pins used to power internal logic and digital sup-  
ply pins used to power the ISA bus driver. T heir recommended  
layout suggests connecting the internal logic supply pins to the  
analog supply. A potential problem can occur if the layout con-  
nects digital supply pins to the analog supply. Connecting some  
of the digital supply pins to one supply and some of the digital  
supply pins to a different supply can create an internal short  
between the two different +5 V supplies.  
1.0µF  
1.0µF  
Figure 33. External Filter Capacitor Connections  
T he crystal shown in the crystal connection circuitry of Fig-  
ure 34 should be 24.576 MHz, fundamental-mode and parallel-  
tuned. Note that using the exact data sheet frequencies is not  
required and that external clock sources can be used to over-  
drive the AD1845s internal oscillators. (See the description of  
the CFS2:0 control bits above.) If using an external clock source,  
apply it to the crystal input pins while leaving the crystal output  
pins unconnected. Attention should be paid to providing low  
jitter external input clocks.  
REV. C  
–35–  
AD1845  
3. T he CS4231 does not require the power pins (VDD) 24,  
45, and 54, or the ground pins (GNDD) 25, and 44. It is  
suggested that the appropriate power/ground pin connec-  
tions be made. T his will not affect the performance of the  
CS4231.  
Analog Devices recommends that all digital pins be driven from  
the same supply. A common technique to achieve maximum  
performance is to use a +5 V regulator to power the analog side  
of the codec from the PCs +12 V supply line, while the standard  
PC +5 V supply line powers the entire digital side of the codec.  
T he separate supplies provide noise isolation for the analog side  
of the codec, and maximize performance of the AD1845.  
4. T he CS4231 does not provide software programmable  
power-down modes.  
5. T he CS4231 does not have the ability to mix the MIC  
input with the DAC output.  
DIGITAL  
GROUND  
PLANE  
ANALOG  
GROUND  
PLANE  
DIGITAL  
GROUND  
PLANE  
ANALOG  
GROUND  
PLANE  
NC NC  
52 51  
GNDD R_AUX2  
44 43  
6. T he CS4231 does not contain a Variable Sample Fre-  
quency Generator and cannot change sample rates “on the  
fly.” T he CS4231 and CS4248 require entering MCE to  
change the sample rate. T he AD1845 can change the  
sample rate without entering MCE. T he AD1845’s 50,000  
selectable sample rates are not available on the CS4231.  
T he Variable Sample Frequency Generator reduces clicks  
and pops encountered in many game applications.  
AD1845  
PLCC  
AD1845  
TQFP  
25 26  
GNDD R_FILT  
24 25  
NC R_FILT  
Figure 36. Recom m ended Ground Plane  
CO MP ATIBILITY WITH CS4231  
1. T he CS4231 requires a 1000 pF NPO type capacitor on  
Pins 26 and 31. T he AD1845 requires a 1 µF capacitor on  
filter Pins 26 and 31. T o achieve compatibility with the  
AD1845, use pad spacing that will accommodate either  
1000 pF NPO capacitors for the CS4231 and the CS4248  
or the 1 µF capacitors for the AD1845.  
7. T he CS4231 requires two crystal inputs, 24.575 MHz and  
16.9344 MH z. T he AD1845 requires only one input of  
24.576 MH z or can be driven from OSC or other exter-  
nal clocks.  
8. T he CS4231 does not contain the INIT D bit.  
9. T he CS4231 minimum RIN = 20 k. T he AD1845 mini-  
mum input resistance is 10 k.  
2. T he AD1845 requires the input antialiasing filters for the  
ADCs (refer to Figures 27 and 28). T he CS4231 can use  
the same filters with no degradation in performance. For  
compatibility it is suggested that the filters be added.  
10. T he AD1845 does not include hardware for compressing  
and decompressing ADPCM data. Analog Devices offers  
Windows based software applets for using ADPCM for-  
mats with the AD1845.  
REV. C  
–36–  
AD1845  
FREQ UENCY RESP O NSE P LO TS  
10  
0
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–10  
–20  
–30  
–40  
–50  
dB  
dB  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
SAMPLE FREQUENCY – FS  
SAMPLE FREQUENCY – F  
S
Figure 39. Digital-to-Analog Frequency  
Response to FS (Full-Scale Inputs, 0 dB)  
Figure 37. Analog-to-Digital Frequency Response  
to FS (Full-Scale Line-Level Inputs, 0 dB)  
10  
0
10  
0
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
–50  
–60  
–50  
dB  
dB  
–60  
–70  
–70  
–80  
–90  
–80  
–90  
–100  
–100  
–110  
–120  
–110  
–120  
0.40  
0.44  
0.48  
0.52  
0.56  
0.60  
0.64  
0.68 0.70  
0.40  
0.44  
0.48  
0.52  
0.56  
0.60  
0.64  
0.68 0.70  
SAMPLE FREQUENCY – FS  
SAMPLE FREQUENCY – FS  
Figure 40. Digital-to-Analog Frequency Response  
—Transition Band (Full-Scale Inputs, 0 dB)  
Figure 38. Analog-to-Digital Frequency Response  
—Transition Band (Full-Scale Line-Level Inputs, 0 dB)  
REV. C  
–37–  
AD1845  
AP P END IX  
EXTEND ED TEMP ERATURE SP ECIFICATIO NS  
Test Conditions  
T he AD1845 has been tested over the industrial temperature range. T he typical values represent the limits that change with tempera-  
ture. All other limits remain unchanged.  
T emperature  
Digital Supply (VDD  
Analog Supply (VCC  
Sample Rate (FS  
Input Signal  
Analog Output Passband  
–40°C to +85°C  
5.0 V  
5.0 V  
DAC T est Conditions  
Calibrated  
)
)
0 dB Attenuation  
16-Bit Linear Mode  
Mute Off, OL = 0  
)
48 kHz  
1008 Hz  
20 Hz to 20 kHz  
2.0 V  
VIH  
VIL  
ADC Input Conditions  
Calibrated  
0.8 V  
VOH  
VOL  
2.4 V  
0.4 V  
0 dB Gain  
–1.0 dB Relative to Full Scale  
Line Input  
16-Bit Linear Mode  
P RO GRAMMABLE GAIN AMP LIFIERAD C  
P aram eter  
Min  
Typ  
Max  
Max  
Units  
Step Size (All Steps T ested) (0 dB to 22.5 dB)  
PGA Gain Range Span  
1.75  
22.83  
dB  
dB  
AUXILIARY, LINE, MO NO , AND MICRO P H O NE INP UT  
ANALO G GAIN/AMP LIFIERS/ATTENUATO RS  
P aram eter  
Min  
Typ  
Units  
Step Size AUX1, AUX2, LINE, MIC (All Steps T ested):  
(+12 dB to –34.5 dB, Referenced to DAC Full Scale)  
Step Size: M_IN (All Steps T ested) (0 dB to –45 dB)  
Input Gain/Attenuation Range: AUX1, AUX2, LINE, MIC  
Input Gain/Attenuation Range: M_IN  
1.5  
3.0  
46.2  
43.5  
dB  
dB  
dB  
dB  
ANALO G-TO -D IGITAL CO NVERTERS  
P aram eter  
Min  
Min  
Typ  
Max  
Max  
Units  
Dynamic Range (–60 dB Input T HD+N Referenced to  
Full Scale, A-Weighted)  
T HD+N (Referenced to Full Scale)  
–81  
–76  
dB  
dB  
D IGITAL-TO -ANALO G CO NVERTERS  
P aram eter  
Typ  
Units  
Dynamic Range (–60 dB Input T HD+N Referenced to  
Full Scale, A-Weighted)  
T HD+N (Referenced to Full Scale)  
–82  
–78  
dB  
dB  
D AC ATTENUATO R  
P aram eter  
Min  
Min  
Typ  
Max  
Max  
Units  
Step Size (0 dB to –22.5 dB)  
–1.5  
dB  
ANALO G O UTP UT  
P aram eter  
Typ  
Units  
VREF  
2.36  
V
REV. C  
–38–  
AD1845  
TABLE O F CO NTENTS  
Control and Programmed I/O (PIO) T ransfers . . . . . . . . . . . 29  
DIRECT MEMORY ACCESS (DMA) T RANSFERS . . . . . . . 30  
Single-Channel DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Dual-Channel DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DMA T iming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DMA Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
POWER-UP AND RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
ADVANCED POWER-DOWN MODES . . . . . . . . . . . . . . . . . 32  
AUT OCALIBRAT ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
CHANGING SAMPLE RAT ES . . . . . . . . . . . . . . . . . . . . . . . . 33  
APPLICAT IONS CIRCUIT S . . . . . . . . . . . . . . . . . . . . . . . . . 34  
GROUNDING AND LAYOUT . . . . . . . . . . . . . . . . . . . . . . . . 35  
COMPAT IBILIT Y WIT H CS4231 . . . . . . . . . . . . . . . . . . . . . 36  
FREQUENCY RESPONSE PLOT S . . . . . . . . . . . . . . . . . . . . 37  
APPENDIX—EXT ENDED T EMPERAT URE  
PRODUCT OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Expanded Mode (MODE2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SPECIFICAT IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
PIN DESIGNAT IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
PIN FUNCT ION DESCRIPT IONS . . . . . . . . . . . . . . . . . . . . . 7  
FUNCT IONAL DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . 10  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Analog Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Analog-to-Digital Datapath . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Digital-to-Analog Datapath . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Digital Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Analog Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Digital Data T ypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
T imer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power Supplies and Voltage Reference . . . . . . . . . . . . . . . . . 11  
Clocks and Sample Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CONT ROL REGIST ERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Control Register Architecture . . . . . . . . . . . . . . . . . . . . . . . . 11  
Direct Control Register Definitions . . . . . . . . . . . . . . . . . . . . 14  
Index Address Register (ADR1:0 = 0) . . . . . . . . . . . . . . . . 14  
Indexed Data Register (ADR1:0 = 1) . . . . . . . . . . . . . . . . . 14  
Status Register (ADR1:0 = 2) . . . . . . . . . . . . . . . . . . . . . . 15  
PIO Data Registers (ADR1:0 = 3) . . . . . . . . . . . . . . . . . . . 16  
Indirect Control Register Definitions . . . . . . . . . . . . . . . . . . . 16  
Left Input Control (IXA3:0 = 0) . . . . . . . . . . . . . . . . . . . . 16  
Right Input Control (IXA3:0 = 1) . . . . . . . . . . . . . . . . . . . 16  
Left Aux # 1 Input Control (IXA3:0 = 2) . . . . . . . . . . . . . . 17  
Right Aux # 1 Input Control (IXA3:0 = 3) . . . . . . . . . . . . . 17  
Left Aux # 2 Input Control (IXA3:0 = 4) . . . . . . . . . . . . . . 17  
Right Aux # 2 Input Control (IXA3:0 = 5) . . . . . . . . . . . . . 17  
Left DAC Control (IXA3:0 = 6) . . . . . . . . . . . . . . . . . . . . 18  
Right DAC Control (IXA3:0 = 7) . . . . . . . . . . . . . . . . . . . 18  
Clock and Data Format (IXA3:0 = 8) . . . . . . . . . . . . . . . . 19  
Interface Configuration (IXA3:0 = 9) . . . . . . . . . . . . . . . . . 20  
Pin Control (IXA3:0 = 10) . . . . . . . . . . . . . . . . . . . . . . . . . 20  
T est and Initialization (IXA3:0 = 11) . . . . . . . . . . . . . . . . . 21  
Miscellaneous Control (IXA3:0 = 12) . . . . . . . . . . . . . . . . 21  
Digital Mix/Attenuation Control (IXA3:0 = 13) . . . . . . . . 22  
DMA Playback Base Count . . . . . . . . . . . . . . . . . . . . . . . . 22  
Upper Base Count (IXA3:0 = 14) . . . . . . . . . . . . . . . . . 22  
Lower Base Count (IXA3:0 = 15) . . . . . . . . . . . . . . . . . . 23  
Alternate Feature Enable /Left MIC Input Control  
(IXA3:0 =16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
MIC Mix Enable/Right MIC Input Control (IXA3:0 = 17) . 23  
Left Line Gain, Attenuate, Mute, Mix (IXA3:0 = 18) . . . . 23  
Right Line Gain, Attenuate, Mute, Mix (IXA3:0 = 19) . . . 24  
Lower T imer Bits (IXA3:0 = 20) . . . . . . . . . . . . . . . . . . . . 24  
Upper T imer Bits (IXA3:0 = 21) . . . . . . . . . . . . . . . . . . . . 25  
Upper Frequency Select (IXA3:0 = 22) . . . . . . . . . . . . . . . 25  
Lower Frequency Select (IXA3:0 = 23) . . . . . . . . . . . . . . . 25  
Capture Playback T imer (IXA3:0 = 24) . . . . . . . . . . . . . . . 25  
Revision ID (IXA3:0 = 25) . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Mono Control (IXA3:0 = 26) . . . . . . . . . . . . . . . . . . . . . . . 26  
Power-Down Control (IXA3:0 = 27) . . . . . . . . . . . . . . . . . 27  
Capture Data Format Control (IXA3:0 = 28) . . . . . . . . . . 27  
Crystal, Clock Select/T otal Power-Down (IXA3:0 = 29) . . 27  
Capture Upper Base Count (IXA3:0 = 30) . . . . . . . . . . . . 28  
Capture Lower Base Count (IXA3:0 = 31) . . . . . . . . . . . . 28  
DAT A AND CONT ROL T RANSFERS . . . . . . . . . . . . . . . . . 29  
Data Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Data Bus Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SPECIFICAT IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
PACKAGE OUT LINE DIMENSIONS . . . . . . . . . . . . . . . . . . 40  
FIGURES TABLE O F CO NTENTS  
1. Interface to ISA Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2. µ-Law or A-Law Expansion . . . . . . . . . . . . . . . . . . . . . . . . 11  
3. µ-Law or A-Law Compression . . . . . . . . . . . . . . . . . . . . . . 11  
4. Direct Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5. Indirect Register Map and Reset/Default States . . . . . . . . . 12  
6. Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7. Mix Gain Level Setting: DAC . . . . . . . . . . . . . . . . . . . . . . . 18  
8. MODE1 Audio Sample Frequency Select . . . . . . . . . . . . . . 19  
9. Digital Audio Data T ype . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
10. Mix Gain Level Setting: AUX1, AUX2, MIC, LINE . . . . . 24  
11. Mono Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
12. Capture Audio Data T ype . . . . . . . . . . . . . . . . . . . . . . . . . 27  
13. Input Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . 28  
14. 8-Bit Mono Data Stream Sequencing . . . . . . . . . . . . . . . . . 29  
15. 8-Bit Stereo Data Stream Sequencing . . . . . . . . . . . . . . . . . 29  
16. 16-Bit Mono Data Stream Sequencing, Little Endian . . . . 29  
17. 16-Bit Stereo Data Stream Sequencing, Little Endian . . . . 29  
18. 16-Bit Mono Data Stream Sequencing, Big Endian . . . . . . 29  
19. 16-Bit Stereo Data Stream Sequencing, Big Endian . . . . . . 29  
20. Control Register/PIO Read Cycle . . . . . . . . . . . . . . . . . . . . 30  
21. Control Register/PIO Write Cycle . . . . . . . . . . . . . . . . . . . 30  
22. 8-Bit Mono DMA Read/Capture Cycle . . . . . . . . . . . . . . . 31  
23. 8-Bit Mono DMA Write/Playback Cycle . . . . . . . . . . . . . . 31  
24. 8-Bit Stereo or 16-Bit Mono DMA Cycle . . . . . . . . . . . . . . 31  
25. 16-Bit Stereo DMA Interrupt . . . . . . . . . . . . . . . . . . . . . . . 31  
26. Advanced Power-Down Mode Summary . . . . . . . . . . . . . . 32  
27. 2 V rms Line-Level Input Circuit for LINE Inputs . . . . . . . 34  
28. 2 V rms Line-Level Input Circuit for M_IN and  
AUX Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
29. “Phantom Powered” Microphone Input Circuit . . . . . . . . . 34  
30. Line Output Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
31. Headphone Drive Connections . . . . . . . . . . . . . . . . . . . . . . 35  
32. Voltage Reference Bypassing . . . . . . . . . . . . . . . . . . . . . . . . 35  
33. External Filter Capacitor Connections . . . . . . . . . . . . . . . . 35  
34. Crystal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
35. Recommended Power Supply Bypassing . . . . . . . . . . . . . . . 35  
36. Recommended Ground Plane . . . . . . . . . . . . . . . . . . . . . . . 36  
37. Analog-to-Digital Frequency Response to FS (Full-Scale  
Line-Level Inputs, 0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
38. Analog-to-Digital Frequency Response—T ransition Band  
(Full-Scale Line-Level Inputs, 0 dB) . . . . . . . . . . . . . . . . . 37  
39. Digital-to-Analog Frequency Response to F S (Full-Scale  
Inputs, 0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
40. Digital-to-Analog Frequency Response—T ransition Band  
(Full-Scale Inputs, 0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
REV. C  
–39–  
AD1845  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
68-Lead P lastic Leaded Chip Car r ier  
(P -68A)  
0.175 (4.45)  
0.995 (25.27)  
0.885 (22.48)  
0.169 (4.29)  
SQ  
9
61  
60  
10  
PIN 1  
0.050  
(1.27)  
TYP  
IDENTIFIER  
0.925 (23.50)  
0.895 (22.73)  
TOP VIEW  
(PINS DOWN)  
0.019 (0.48)  
0.017 (0.43)  
0.029 (0.74)  
0.027 (0.69)  
26  
44  
43  
27  
0.954 (24.23)  
0.950 (24.13)  
SQ  
0.104 (2.64) TYP  
100-Lead Thin Q uad Flatpack  
(ST-100)  
0.640 (16.25)  
SQ  
SQ  
0.620 (15.75)  
0.553 (14.05)  
0.549 (13.95)  
0.057 (1.45)  
0.053 (1.35)  
0.030 (0.75)  
0.020 (0.50)  
100  
1
76  
75  
12°  
TYP  
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
0.004  
(0.102)  
MAX LEAD  
25  
51  
50  
26  
COPLANARITY  
6° ± 4°  
0° – 7°  
0.006 (0.15)  
0.002 (0.05)  
0.020 (0.50)  
BSC  
0.011 (0.27)  
0.007 (0.17)  
REV. C  
–40–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY