AD1583ART-REEL [ADI]

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO3, PLASTIC, TO-236AB, SOT-23, 3 PIN, Voltage Reference;
AD1583ART-REEL
型号: AD1583ART-REEL
厂家: ADI    ADI
描述:

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO3, PLASTIC, TO-236AB, SOT-23, 3 PIN, Voltage Reference

光电二极管 输出元件
文件: 总16页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V to 5.0 V Micropower, Precision  
Series Mode Voltage References  
a
AD1582/AD1583/AD1584/AD1585  
FUNCTIONAL BLOCK DIAGRAM  
3-Lead SOT-23  
FEATURES  
Series Reference (2.5 V, 3 V, 4.096 V, 5 V)  
Low Quiescent Current: 70 A max  
Current Output Capability: 5 mA  
(RT Suffix)  
Wide Supply Range: VIN = VOUT + 200 mV to 12 V  
Wideband Noise (10 Hz–10 kHz): 50 V rms  
Specified Temperature Range: –40C to +125C  
Compact, Surface-Mount, SOT-23 Package  
1
2
V
OUT  
AD1582/  
AD1583/  
AD1584/  
AD1585  
3
V
IN  
TOP VIEW  
GND  
AD158x Products, Three Electrical Grades  
Electrical  
Grade  
Tempco  
(ppmC)  
Initial Accuracy  
AD1582 AD1583/AD1585 AD1584  
TARGET APPLICATIONS  
1. Portable, battery-powered equipment. Notebook computers,  
cellular phones, pagers, PDAs, GPSs, and DMMs.  
B
C
A
0.08%  
0.16%  
0.80%  
0.10%  
0.20%  
1.00%  
0.10%  
0.20%  
0.98%  
50  
50  
100  
2. Computer workstations. Suitable for use with a wide range of  
video RAMDACs.  
GENERAL DESCRIPTION  
The AD1582, AD1583, AD1584, and AD1585 are a family of low  
cost, low power, low dropout, precision band gap references.  
These designs are available as three-terminal (series) devices  
and are packaged in the compact SOT-23, 3-lead, surface-mount  
package. The versatility of these references makes them ideal for  
use in battery-powered 3 V or 5 V systems where there may be  
wide variations in supply voltage and a need to minimize power  
dissipation.  
3. Smart industrial transmitters  
4. PCMCIA cards  
5. Automotive  
6. Hard disk drives  
7. 3 V/5 V 8-bit/12-bit data converters  
900  
800  
700  
600  
The superior accuracy and temperature stability of the AD1582/  
AD1583/AD1584/AD1585 is made possible by the precise  
matching and thermal tracking of on-chip components. Patented  
temperature drift curvature correction design techniques minimize  
the nonlinearities in the voltage output temperature characteristic.  
*
SHUNT REFERENCE  
500  
400  
These series mode devices (AD1582/AD1583/AD1584/AD1585)  
source or sink up to 5 mA of load current and operate efficiently  
with only 200 mV of required headroom supply. This family  
draws a maximum 70 µA of quiescent current with only a 1.0 µA/V  
variation with supply voltage. The advantage of these designs  
over conventional shunt devices is extraordinary. Valuable supply  
current is no longer wasted through an input series resistor and  
maximum power efficiency is achieved at all input voltage levels.  
300  
200  
100  
AD1582 SERIES REFERENCE  
0
2.7  
5
V
– V  
SUPPLY  
*
3.076kSOURCE RESISTOR  
The AD1582, AD1583, AD1584, and AD1585 are available in  
three grades, A, B, and C, which are provided in a tiny foot-  
print, the SOT-23. All grades are specified over the industrial  
temperature range of –40°C to +125°C.  
Figure 1. Supply Current (µA) vs. Supply Voltage (V)  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2003  
AD1582/AD1583/AD1584/AD1585  
AD1582–SPECIFICATIONS  
(@ TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.)  
AD1582A  
Typ  
AD1582B  
Typ  
AD1582C  
Typ Max Unit  
Parameter  
Min  
Max Min  
Max Min  
OUTPUT VOLTAGE (@ 25°C)  
VO  
2.480 2.500 2.520 2.498 2.500 2.502 2.496 2.500 2.504  
V
INITIAL ACCURACY ERROR (@ 25°C)  
VOERR  
–20  
–0.80  
+20  
+0.80 –0.08  
–2  
+2  
–4  
+4  
+0.16  
mV  
%
+0.08 –0.16  
OUTPUT VOLTAGE TEMPERATURE DRIFT  
100  
50  
50  
50  
ppm/°C  
TEMPERATURE COEFFICIENT (TCVO)  
–40°C < TA < +125°C  
0°C < TA < 70°C  
40  
35  
100  
18  
15  
50  
18  
15  
ppm/°C  
ppm/°C  
MINIMUM SUPPLY HEADROOM (VIN–VOUT  
)
200  
200  
200  
mV  
LOAD REGULATION  
0 mA < IOUT < 5 mA (–40°C to +85°C)  
0 mA < IOUT < 5 mA (–40°C to +125°C)  
–5 mA < IOUT < 0 mA (–40°C to +85°C)  
–5 mA < IOUT < 0 mA (–40°C to +125°C)  
–0.1 mA < IOUT < +0.1 mA (–40°C to +85°C)  
0.2  
0.4  
0.25  
0.45  
2.7  
0.2  
0.4  
0.25  
0.45  
2.7  
0.2  
0.4  
0.25  
0.45  
2.7  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
–0.1 mA < IOUT < +0.1 mA (–40°C to +125°C)  
3.5  
3.5  
3.5  
LINE REGULATION  
VOUT 200 mV < VIN < 12 V  
IOUT = 0 mA  
25  
25  
25  
µV/V  
RIPPLE REJECTION (VOUT/VIN  
)
VIN = 5 V 100 mV (f = 120 Hz)  
80  
80  
80  
dB  
µA  
QUIESCENT CURRENT  
70  
15  
70  
15  
70  
15  
SHORT CIRCUIT CURRENT TO GROUND  
mA  
NOISE VOLTAGE (@ 25°C)  
0.1 Hz to 10 Hz  
10 Hz to 10 kHz  
70  
50  
70  
50  
70  
50  
µV p-p  
µV rms  
TURN-ON SETTLING TIME TO 0.1%,  
CL = 0.2 µF  
100  
100  
100  
µs  
LONG-TERM STABILITY  
1000 Hours @ 25°C  
100  
115  
100  
115  
100  
115  
ppm/1000 hrs.  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
TEMPERATURE RANGE  
Specified Performance (A, B, C)  
Operating Performance (A, B, C)  
–40  
–55  
+125 –40  
+125 –55  
+125 –40  
+125 –55  
+125 °C  
+125 °C  
Specifications subject to change without notice.  
REV. C  
–2–  
AD1582/AD1583/AD1584/AD1585  
(@ T = TMIN to TMAX, VIN = 5 V, unless otherwise noted.)  
AD1583–SPECIFICATIONS  
A
AD1583A  
Typ  
AD1583B  
Typ  
AD1583C  
Typ Max Unit  
Parameter  
Min  
Max Min  
Max Min  
OUTPUT VOLTAGE (@ 25°C)  
VO  
2.970 3.000 3.030 2.997 3.000 3.003 2.994 3.000 3.006  
V
INITIAL ACCURACY ERROR (@ 25°C)  
VOERR  
–30  
–1.0  
+30  
+1.0  
–3  
–0.1  
+3  
+0.1  
–6  
–0.20  
+6  
+0.20  
mV  
%
OUTPUT VOLTAGE TEMPERATURE DRIFT  
100  
50  
50  
ppm/°C  
TEMPERATURE COEFFICIENT (TCVO)  
–40°C < TA < +125°C  
0°C < TA < 70°C  
40  
35  
100  
18  
15  
50  
18  
15  
50  
ppm/°C  
ppm/°C  
MINIMUM SUPPLY HEADROOM (VIN–VOUT  
)
200  
200  
200  
mV  
LOAD REGULATION  
0 mA < IOUT < 5 mA (–40°C to +85°C)  
0 mA < IOUT < 5 mA (–40°C to +125°C)  
–5 mA < IOUT < 0 mA (–40°C to +85°C)  
–5 mA < IOUT < 0 mA (–40°C to +125°C)  
–0.1 mA < IOUT < +0.1 mA (–40°C to +85°C)  
–0.1 mA < IOUT < +0.1 mA (–40°C to +125°C)  
0.25  
0.45  
0.40  
0.6  
2.9  
3.7  
0.25  
0.45  
0.40  
0.6  
2.9  
3.7  
0.25  
0.45  
0.40  
0.6  
2.9  
3.7  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
LINE REGULATION  
VOUT 200 mV < VIN < 12 V  
IOUT = 0 mA  
25  
25  
25  
µV/V  
RIPPLE REJECTION (VOUT/VIN  
)
VIN = 5 V 100 mV (f = 120 Hz)  
80  
80  
80  
dB  
µA  
QUIESCENT CURRENT  
70  
15  
70  
15  
70  
15  
SHORT CIRCUIT CURRENT TO GROUND  
mA  
NOISE VOLTAGE (@ 25°C)  
0.1 Hz to 10 Hz  
10 Hz to 10 kHz  
85  
60  
85  
60  
85  
60  
µV p-p  
µV rms  
TURN-ON SETTLING TIME TO 0.1%  
CL = 0.2 µF  
120  
120  
120  
µs  
LONG-TERM STABILITY  
1000 Hours @ 25°C  
100  
115  
100  
115  
100  
115  
ppm/1000 hrs.  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
TEMPERATURE RANGE  
Specified Performance (A, B, C)  
Operating Performance (A, B, C)  
–40  
–55  
+125 –40  
+125 –55  
+125 –40  
+125 –55  
+125 °C  
+125 °C  
Specifications subject to change without notice.  
REV. C  
–3–  
AD1582/AD1583/AD1584/AD1585  
AD1584–SPECIFICATIONS (@ TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.)  
AD1584A  
Min Typ  
AD1584B  
Typ  
AD1584C  
Typ Max Unit  
Parameter  
Max Min  
Max Min  
OUTPUT VOLTAGE (@ 25°C)  
VO  
4.056 4.096 4.136 4.092 4.096 4.100 4.088 4.096 4.104  
V
INITIAL ACCURACY ERROR (@ 25°C)  
VOERR  
–40  
–0.98  
+40  
+0.98 –0.1  
–4  
+4  
+0.1  
–8  
–0.2  
+8  
+0.2  
mV  
%
OUTPUT VOLTAGE TEMPERATURE DRIFT  
100  
50  
50  
ppm/°C  
TEMPERATURE COEFFICIENT (TCVO)  
–40°C < TA < +125°C  
0°C < TA < 70°C  
40  
35  
100  
18  
15  
50  
18  
15  
50  
ppm/°C  
ppm/°C  
MINIMUM SUPPLY HEADROOM (VIN–VOUT  
)
200  
200  
200  
mV  
LOAD REGULATION  
0 mA < IOUT < 5 mA (–40°C to +85°C)  
0 mA < IOUT < 5 mA (–40°C to +125°C)  
–5 mA < IOUT < 0 mA (–40°C to +85°C)  
–5 mA < IOUT < 0 mA (–40°C to +125°C)  
–0.1 mA < IOUT < +0.1 mA (–40°C to +85°C)  
–0.1 mA < IOUT < +0.1 mA (–40°C to +125°C)  
0.32  
0.52  
0.40  
0.6  
3.2  
4.1  
0.32  
0.52  
0.40  
0.6  
3.2  
4.1  
0.32  
0.52  
0.40  
0.6  
3.2  
4.1  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
LINE REGULATION  
VOUT 200 mV < VIN < 12 V  
IOUT = 0 mA  
25  
25  
25  
µV/V  
RIPPLE REJECTION (VOUT/VIN  
)
VIN = 5 V 100 mV (f = 120 Hz)2  
QUIESCENT CURRENT  
80  
80  
80  
dB  
µA  
70  
15  
70  
15  
70  
15  
SHORT CIRCUIT CURRENT TO GROUND  
mA  
NOISE VOLTAGE (@ 25°C)  
0.1 Hz to 10 Hz  
10 Hz to 10 kHz  
110  
90  
110  
90  
110  
90  
µV p-p  
µV rms  
TURN-ON SETTLING TIME TO 0.1%  
CL = 0.2 µF  
140  
140  
140  
µs  
LONG-TERM STABILITY  
1000 Hours @ 25°C  
100  
115  
100  
115  
100  
115  
ppm/1000 hrs.  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
TEMPERATURE RANGE  
Specified Performance (A, B, C)  
Operating Performance (A, B, C)  
–40  
–55  
+125 –40  
+125 –55  
+125 –40  
+125 –55  
+125 °C  
+125 °C  
Specifications subject to change without notice.  
REV. C  
–4–  
AD1582/AD1583/AD1584/AD1585  
(@ TA = TMIN to TMAX, VIN = 6 V, unless otherwise noted.)  
AD1585–SPECIFICATIONS  
AD1585A  
Typ  
AD1585B  
Typ  
AD1585C  
Typ Max Unit  
Parameter  
Min  
Max Min  
Max Min  
OUTPUT VOLTAGE (@ 25°C)  
VO  
4.950 5.000 5.050 4.995 5.000 5.005 4.990 5.000 5.010  
V
INITIAL ACCURACY ERROR (@ 25°C)  
VOERR  
–50  
–1.0  
+50  
+1.0  
–5  
–0.10  
+5  
–10  
+10  
+0.20  
mV  
%
+0.10 –0.20  
OUTPUT VOLTAGE TEMPERATURE DRIFT  
100  
50  
50  
ppm/°C  
TEMPERATURE COEFFICIENT (TCVO)  
–40°C < TA < +125°C  
0°C < TA < 70°C  
40  
35  
100  
18  
15  
50  
18  
15  
50  
ppm/°C  
ppm/°C  
MINIMUM SUPPLY HEADROOM (VIN–VOUT  
)
200  
200  
200  
mV  
LOAD REGULATION  
0 mA < IOUT < 5 mA (–40°C to +85°C)  
0 mA < IOUT < 5 mA (–40°C to +125°C)  
–5 mA < IOUT < 0 mA (–40°C to +85°C)  
–5 mA < IOUT < 0 mA (–40°C to +125°C)  
–0.1 mA < IOUT < +0.1 mA (–40°C to +85°C)  
–0.1 mA < IOUT < +0.1 mA (–40°C to +125°C)  
0.40  
0.6  
0.40  
0.6  
4
0.40  
0.6  
0.40  
0.6  
4
0.40  
0.6  
0.40  
0.6  
4
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
4.8  
4.8  
4.8  
LINE REGULATION  
VOUT 200 mV < VIN < 12 V  
IOUT = 0 mA  
25  
25  
25  
µV/V  
RIPPLE REJECTION (VOUT/VIN  
)
VIN = 6 V 100 mV (f = 120 Hz)  
80  
80  
80  
dB  
µA  
QUIESCENT CURRENT  
70  
15  
70  
15  
70  
15  
SHORT CIRCUIT CURRENT TO GROUND  
mA  
NOISE VOLTAGE (@ 25°C)  
0.1 Hz to 10 Hz  
10 Hz to 10 kHz  
140  
100  
140  
100  
140  
100  
µV p-p  
µV rms  
TURN-ON SETTLING TIME TO 0.1%  
CL = 0.2 µF  
175  
175  
175  
µs  
LONG-TERM STABILITY  
1000 Hours @ 25°C  
100  
115  
100  
115  
100  
115  
ppm/1000 hrs.  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
TEMPERATURE RANGE  
Specified Performance (A, B, C)  
Operating Performance (A, B, C)  
–40  
–55  
+125 –40  
+125 –55  
+125 –40  
+125 –55  
+125 °C  
+125 °C  
Specifications subject to change without notice.  
REV. C  
–5–  
AD1582/AD1583/AD1584/AD1585  
ABSOLUTE MAXIMUM RATINGS1  
PACKAGE BRANDING INFORMATION  
VIN to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V  
Four fields identify the device:  
Internal Power Dissipation2  
First field, product identifier, for example, a “2/3/4/5” identifies  
the generic as AD1582/AD1583/AD1584/AD1585  
Second field, device grade, which can be “A,” “B,” or “C”  
Third field, calendar year of processing, “7” for 1997...,  
“A” for 2001...  
SOT-23 (RT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 mW  
Storage Temperature Range . . . . . . . . . . . . –65°C to +125°C  
Specified Temperature Range  
AD1582RT/AD1583RT/,  
AD1584RT/AD1585RT . . . . . . . . . . . . . –40°C to +125°C  
Fourth field, two week window within the calendar year, for  
example, letters A–Z to represent a two-week window starting  
with “A” for the first two weeks of January.  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air at 25°C: SOT-23 package: θJA = 300°C/W.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD1582/AD1583/AD1584/AD1585 feature proprietary ESD protection circuitry,  
permanent damage may occur on devices subjected to high energy electrostatic discharges.  
Therefore, proper ESD precautions are recommended to avoid performance degradation or loss  
of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
ORDERING GUIDE  
Initial  
Accuracy  
%
Initial  
Output Accuracy  
Voltage (mV)  
Temperature Package  
Coefficient  
Package Top  
Number of  
Model  
Description  
Option  
Mark Parts per Reel  
AD1582ART-Reel 2.50  
AD1582ART-Reel7 2.50  
AD1582BRT-Reel 2.50  
AD1582BRT-Reel7 2.50  
AD1582CRT-Reel 2.50  
AD1582CRT-Reel7 2.50  
20  
20  
2
2
4
0.80%  
0.80%  
0.08%  
0.08%  
0.16%  
0.16%  
100  
100  
50  
50  
50  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
2A0A  
2A0A  
2B0A  
2B0A  
2C0A 10,000  
2C0A  
10,000  
3,000  
10,000  
3,000  
4
50  
3,000  
AD1583ART-Reel 3.00  
AD1583ART-Reel7 3.00  
AD1583BRT-Reel 3.00  
AD1583BRT-Reel7 3.00  
AD1583CRT-Reel 3.00  
AD1583CRT-Reel7 3.00  
30  
30  
3
3
6
1.00%  
1.00%  
0.10%  
0.10%  
0.20%  
0.20%  
100  
100  
50  
50  
50  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
3A0A  
3A0A  
3B0A  
3B0A  
3C0A 10,000  
3C0A  
10,000  
3,000  
10,000  
3,000  
6
50  
3,000  
AD1584ART-Reel 4.096  
AD1584ART-Reel7 4.096  
AD1584BRT-Reel 4.096  
AD1584BRT-Reel7 4.096  
AD1584CRT-Reel 4.096  
AD1584CRT-Reel7 4.096  
40  
40  
4
4
8
0.98%  
0.98%  
0.10%  
0.10%  
0.20%  
0.20%  
100  
100  
50  
50  
50  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
4A0A  
4A0A  
4B0A  
4B0A  
4C0A 10,000  
4C0A  
10,000  
3,000  
10,000  
3,000  
8
50  
3,000  
AD1585ART-Reel 5.00  
AD1585ART-Reel7 5.00  
AD1585BRT-Reel 5.00  
AD1585BRT-Reel7 5.00  
AD1585CRT-Reel 5.00  
AD1585CRT-Reel7 5.00  
50  
50  
5
5
10  
10  
1.00%  
1.00%  
0.10%  
0.10%  
0.20%  
0.20%  
100  
100  
50  
50  
50  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
5A0A  
5A0A  
5B0A  
5B0A  
5C0A 10,000  
5C0A 3,000  
10,000  
3,000  
10,000  
3,000  
50  
REV. C  
–6–  
AD1582/AD1583/AD1584/AD1585  
PARAMETER DEFINITION  
Temperature Coefficient (TCVO)  
The change of output voltage over the operating temperature  
change and normalized by the output voltage at 25ЊC, expressed  
in ppm/ЊC. The equation follows:  
Thermal Hysteresis (VO_HYS  
)
The change of output voltage after the device is cycled through  
temperatures from +25ЊC to –40ЊC to +85°C and back to +25ЊC.  
This is a typical value from a sample of parts put through such  
a cycle:  
V T V T  
(
)
(
)
O
2
O
1
VO _ HYS =VO 25°C V  
(
)
×106  
O _TC  
TCVO ppm/°C ] =  
[
V 25°C × T T  
(
)
(
)
O
2
1
VO 25°C V  
(
)
O _TC  
×106  
Where:  
VO _ HYS ppm =  
[
]
VO 25°C  
(
)
VO(25ЊC) = VO at 25ЊC  
Where:  
VO(T1) = VO at temperature1  
VO(T2) = VO at temperature2  
VO(25ЊC) = VO at 25ЊC  
V
O_TC = VO at 25ЊC after temperature cycle at +25ЊC to  
–40ЊC to +85ЊC and back to +25ЊC  
Line Regulation (VO/VIN  
)
Operating Temperature  
The change in output voltage due to a specified change in input  
voltage. It includes the effects of self-heating. Line regulation is  
expressed in either percent per volt, parts-per-million per volt,  
or microvolts per volt change in input voltage.  
The temperature extremes at which the device can still function.  
Parts may deviate from their specified performance outside the  
specified temperature range.  
Load Regulation (VO/ILOAD  
)
The change in output voltage due to a specified change in load  
current. It includes the effects of self-heating. Load Regulation  
is expressed in either microvolts per milliampere, parts-per-million  
per milliampere, or of dc output resistance.  
Long-Term Stability (VO)  
Typical shift of output voltage at 25ЊC on a sample of parts  
subjected to an operation life test of 1000 hours at 125ЊC:  
VO =VO  
t
V t  
( ) O ( 1)  
0
VO  
t
V t  
( ) O ( 1)  
0
VO ppm =  
×106  
[
]
VO  
t
( )  
0
Where:  
VO(t0) = VO at 25ЊC at time 0  
VO(t1) = VO at 25ЊC after 1000 hours operation at 125ЊC  
REV. C  
–7–  
AD1582/AD1583/AD1584/AD1585–Typical Performance Characteristics  
0.40  
22  
20  
18  
16  
14  
12  
10  
8
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
AD1585  
AD1582  
6
4
2
0
0
2
4
6
8
10  
12  
–60 –50 –40 –30 –20 –10  
0
10  
20 30  
50  
40  
ppm/C  
V
– V  
IN  
TPC 1. Typical Output Voltage Temperature Drift  
Distribution  
TPC 4. Load Regulation vs. VIN  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
AD1582  
AD1585  
5
0
–100%  
–0.60%  
–0.20%  
V
0.20%  
– ERROR  
0.60%  
1.00%  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
I
– mA  
OUT  
OUT  
TPC 2. Typical Output Voltage Error Distribution  
TPC 5. Line Regulation vs. ILOAD  
2.504  
2.502  
2.5  
1E+04  
I
= 1mA  
OUT  
2.498  
2.496  
I
= 0  
OUT  
1E+03  
2.494  
2.492  
2.49  
1E+02  
1E+01  
2.488  
1E+05  
1E+02  
1E+03  
FREQUENCY – Hz  
1E+04  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE –  
C
TPC 3. Typical Temperature Drift Characteristic Curves  
TPC 6. Noise Spectral Density  
REV. C  
–8–  
AD1582/AD1583/AD1584/AD1585  
THEORY OF OPERATION  
The AD1582/AD1583/AD1584/AD1585 family uses the band gap  
concept to produce stable, low temperature coefficient voltage  
references suitable for high accuracy data acquisition components  
and systems. This family of precision references uses the underlying  
temperature characteristics of a silicon transistor’s base-emitter  
voltage in the forward-biased operating region. Under this  
condition, all such transistors have a –2 mV/°C temperature  
coefficient (TC) and a VBE that, when extrapolated to absolute  
zero, 0°K, (with collector current proportional to absolute  
temperature) approximates the silicon band gap voltage. By  
summing a voltage that has an equal and opposite temperature  
coefficient of 2 mV/°C with the VBE of a forward-biased transistor,  
an almost zero TC reference can be developed. In the AD1582/  
AD1583/AD1584/AD1585 simplified circuit diagram shown in  
Figure 2, such a compensating voltage, V1, is derived by  
driving two transistors at different current densities and  
amplifying the resultant VBE difference (VBE—which has a positive  
TC). The sum of VBE and V1(VBG) is then buffered and ampli-  
fied to produce stable reference voltage outputs of 2.5 V, 3 V,  
4.096 V, and 5 V.  
+
1
AD1582/  
AD1583/  
AD1584/  
AD1585  
V
V
3
IN  
1F  
OUT  
4.7F  
2
Figure 3. Typical Connection Diagram  
TEMPERATURE PERFORMANCE  
The AD1582/AD1583/AD1584/AD1585 family of references is  
designed for applications where temperature performance is  
important. Extensive temperature testing and characterization  
ensures that the device’s performance is maintained over the  
specified temperature range.  
The error band guaranteed with the AD1582/AD1583/AD1584/  
AD1585 family is the maximum deviation from the initial value at  
25°C. Thus, for a given grade of the AD1582/AD1583/AD1584/  
AD1585, the designer can easily determine the maximum total  
error by summing initial accuracy and temperature variation,  
e.g., for the AD1582BRT, the initial tolerance is 2 mV, the  
temperature error band is 8 mV, thus the reference is guaranteed  
to be 2.5 V 10 mV from –40°C to +125°C.  
V
IN  
R3  
R4  
Figure 4 shows the typical output voltage drift for the AD1582  
and illustrates the methodology. The box in Figure 4 is bounded on  
the x-axis by operating temperature extremes. It is bounded  
on the y-axis by the maximum and minimum output voltages  
observed over the operating temperature range. The slope of the  
diagonal drawn from the initial output value at 25°C to the output  
values at +125°C and –40°C determines the performance grade of  
the device.  
V
OUT  
R5  
V
BG  
+
V
R2  
BE  
R6  
+
V1  
R1  
Duplication of these results requires a test system that is highly  
accurate with stable temperature control. Evaluation of the  
AD1582 produces curves similar to those in TPC 3 and Figure 4,  
but output readings may vary depending upon the test methods  
and test equipment used.  
GND  
Figure 2. Simplified Schematic  
APPLYING THE AD1582/AD1583/AD1584/AD1585  
The AD1582/AD1583/AD1584/AD1585 is a family of series  
references that can be used for many applications. To achieve  
optimum performance with these references, only two external  
components are required. Figure 3 shows the AD1582 configured  
for operation under all loading conditions. With a simple 4.7 µF  
capacitor attached to the input and a 1 µF capacitor applied  
to the output, the devices can achieve specified performance for  
all input voltage and output current requirements. For best  
transient response, add a 0.1 µF capacitor in parallel with the 4.7 µF  
capacitor. While a 1 µF output capacitor can provide stable  
performance for all loading conditions, the AD1582 can operate  
under low (–100 µA < I OUT < +100 µA) current conditions with  
just a 0.2 µF output capacitor. The 4.7 µF capacitor on the input can  
be reduced to 1 µF in this condition.  
2.504  
2.502  
2.5  
2.498  
2.496  
2.494  
2.492  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Unlike conventional shunt reference designs, the AD1582/  
AD1583/AD1584/AD1585 family provides stable output voltages  
at constant operating current levels. When properly decoupled,  
as shown in Figure 3, these devices can be applied to any circuit  
and provide superior low power solutions.  
TEMPERATURE –  
C
Figure 4. Output Voltage vs. Temperature  
REV. C  
–9–  
AD1582/AD1583/AD1584/AD1585  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOLTAGE OUTPUT NONLINEARITY VERSUS  
TEMPERATURE  
When using a voltage reference with data converters, it is impor-  
tant to understand the impact that temperature drift can have on  
the converter’s performance. The nonlinearity of the reference  
output drift represents additional error that cannot easily be  
calibrated out of the overall system. To better understand the  
impact such a drift can have on a data converter, refer to Figure 5  
where the measured drift characteristic is normalized to the  
endpoint average drift. The residual drift error of the AD1582  
of approximately 200 ppm demonstrates that this family of  
references is compatible with systems that require 12-bit accu-  
rate temperature performance.  
–700  
–450  
–200  
50  
ppm  
300  
550  
250  
200  
150  
100  
50  
Figure 6. Output Voltage Hysteresis Distribution  
SUPPLY CURRENT VERSUS TEMPERATURE  
The quiescent current for the AD1582/AD1583/AD1584/AD1585  
family of references varies slightly over temperature and input  
supply range. Figure 7 demonstrates the typical performance  
for the AD1582 reference when varying both temperature and  
supply voltage. As is evident from the graph, the AD1582 supply  
current increases only 1.0 µA/V, making this device extremely  
attractive for use in applications where there may be wide varia-  
tions in supply voltage and a need to minimize power dissipation.  
0
–50  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE – C  
Figure 5. Residual Drift Error  
80  
OUTPUT VOLTAGE HYSTERESIS  
T
= +85C  
T
= +25C  
A
A
60  
40  
20  
0
High performance industrial equipment manufacturers may  
require the AD1582/AD1583/AD1584/AD1585 family to maintain  
a consistent output voltage error at 25°C after the references are  
operated over the full temperature range. While all references  
exhibit a characteristic known as output voltage hysteresis, the  
AD1582/AD1583/AD1584/AD1585 family is designed to minimize  
this characteristic. This phenomenon can be quantified by  
measuring the change in the +25°C output voltage after  
temperature excursions from +125°C to +25°C, and from –40°C  
to +25°C. Figure 6 displays the distribution of the AD1582  
output voltage hysteresis.  
T
= –40C  
A
3
4
5
6
7
8
9
10  
11  
V
– V  
IN  
Figure 7. Typical Supply Current over Temperature  
SUPPLY VOLTAGE  
One of the ideal features of AD1582/AD1583/AD1584/AD1585 is  
its low supply voltage headroom. The part can operate at  
supply voltage as low as 200 mV above VOUT and up to 12 V.  
However, if negative voltage is inadvertently applied to VIN with  
respect to ground or any negative transient, >5 V is coupled to  
VIN and the device may be damaged.  
REV. C  
–10–  
AD1582/AD1583/AD1584/AD1585  
AC PERFORMANCE  
100  
To apply the AD1582/AD1583/AD1584/AD1585 family of  
references, it is important to understand the effects of dynamic  
output impedance and power supply rejection. In Figure 8a, a  
voltage divider is formed by the AD1582’s output impedance and  
by the external source impedance. Figure 8b shows the effect of  
varying the load capacitor on the reference output. Power supply  
rejection ratio (PSRR) should be determined when characterizing  
the ac performance of a series voltage reference. Figure 9a shows a  
test circuit used to measure PSRR, and Figure 9b demonstrates  
the AD1582’s ability to attenuate line voltage ripple.  
90  
80  
70  
AD1582  
60  
50  
AD1585  
40  
30  
20  
10  
0
V
DC  
LOAD  
5V  
1.E+00 1.E+01  
1.E+02  
1.E+03  
1.E+04  
FREQUENCY – Hz  
1.E+05  
1.E+06  
2kꢃ  
10kꢃ  
10kꢃ  
2 V  
10kꢃ  
OUT  
5F  
1  
DUT  
Figure 9b. Ripple Rejection vs. Frequency  
100A  
1F  
2V  
NOISE PERFORMANCE AND REDUCTION  
The noise generated by the AD1582 is typically less then  
70 µV p-p over the 0.1 Hz to 10 Hz frequency band. Figure 10  
shows the 0.1 Hz to 10 Hz noise of a typical AD1582. The noise  
measurement is made with a high gain band-pass filter. Noise in  
a 10 Hz to 10 kHz region is approximately 50 µV rms. Figure 11  
shows the broadband noise of a typical AD1582. If further noise  
reduction is desired, a 1-pole low-pass filter may be added  
between the output pin and the ground. A time constant of 0.2 ms  
has a –3 dB point at roughly 800 Hz, and reduces the high  
frequency noise to about 16 µV rms. It should be noted,  
however, that while additional filtering on the output may improve  
the noise performance of the AD1582/AD1583/AD1584/AD1585  
family, the added output impedance could degrade the ac  
performance of the references.  
Figure 8a. Output Impedance Test Circuit  
100  
1F CAP  
10  
AD1585  
AD1582  
1
0.1  
1E+01  
1E+02  
1E+03  
1E+04  
1E+05  
1E+06  
10V  
1s  
FREQUENCY – Hz  
100  
90  
Figure 8b. Output Impedance vs. Frequency  
10kꢃ  
10V  
5V 100mV  
1  
10  
V
0%  
0.22F  
OUT  
10kꢃ  
DUT  
200mV  
0.22ꢀ  
F
Figure 10. 0.1 Hz to10 Hz Voltage Noise  
Figure 9a. Ripple Rejection Test Circuit  
100V  
10ms  
100  
90  
10  
0%  
Figure 11. 10 Hz to 10 kHz Wideband Noise  
REV. C  
–11–  
AD1582/AD1583/AD1584/AD1585  
TURN-ON TIME  
DYNAMIC PERFORMANCE  
Many low power instrument manufacturers are becoming increas-  
ingly concerned with the turn-on characteristics of the components  
being used in their systems. Fast turn-on components often enable  
the end user to save power by keeping power off when it is not  
needed. Turn-on settling time is defined as the time required, after  
the application of power (cold start), for the output voltage to  
reach its final value within a specified error. The two major factors  
affecting this are the active circuit settling time and the time  
required for the thermal gradients on the chip to stabilize.  
Figure 12a shows the turn-on settling and transient response test  
circuit. Figure 12b shows the turn-on characteristic of the  
AD1582. This characteristic is generated from cold-start operation  
and represents the true turn-on waveform after power-up.  
Figure 12c shows the fine settling characteristics of the AD1582.  
Typically, the reference settles to within 0.1% of its final value  
in about 100 µs.  
Many A/D and D/A converters present transient current loads  
to the reference, and poor reference response can degrade the  
converter’s performance. The AD1582/AD1583/AD1584/AD1585  
family of references provides superior static and dynamic line  
and load regulation. Since these series references are capable of  
both sourcing and sinking large current loads, they exhibit  
excellent settling characteristics.  
Figure 13 displays the line transient response for the AD1582.  
The circuit used to perform such a measurement is shown in  
Figure 12a, where the input supply voltage is toggled from 5 V  
to 10 V and the input and output capacitors are each 0.22 µF.  
Figures 14 and 15 show the load transient settling characteristics  
for the AD1582 when load current steps of 0 mA to +5 mA  
and 0 mA to –1 mA are applied. The input supply voltage  
remains constant at 5 V, the input decoupling and output load  
capacitors are 4.7 µF and 1 µF respectively, and the output current  
is toggled. For both positive and negative current loads, the  
reference responses settle very quickly and exhibit initial voltage  
spikes less than 10 mV.  
The device can momentarily draw excessive supply current  
when VSUPPLY is slightly below the minimum specified level.  
Power supply resistance must be low enough to ensure reliable  
turn-on. Fast power supply edges minimize this effect.  
10kꢃ  
5V  
50s  
5V OR 10V  
0V OR 5V  
0V OR 10V  
0V TO 10V  
100  
90  
1  
0.22F  
V
OUT  
10kꢃ  
DUT  
0.22F  
Figure 12a. Turn-On/Transient Response Test Circuit  
10  
0%  
200mV  
50s  
5V  
20s  
Figure 13. Line Transient Response  
100  
90  
5V  
20s  
100  
90  
10  
0%  
1V  
20s  
Figure 12b. Turn-On Characteristics  
10  
0%  
5mV  
20s  
5V  
20s  
Figure 14. Load Transient Response (0 mA to 5 mA Load)  
100  
90  
20s  
5V  
100  
90  
10  
0%  
1mV  
20s  
Figure 12c. Turn-On Settling  
10  
0%  
5mV  
20s  
Figure 15. Load Transient Response (0 mA to –1 mA Load)  
REV. C  
–12–  
AD1582/AD1583/AD1584/AD1585  
OUTLINE DIMENSIONS  
3-Lead Plastic Surface-Mount Package [SOT-23]  
(RT-3)  
Dimensions shown in millimeters  
3.04  
2.90  
2.80  
1.40  
1.30  
1.20  
3
2.64  
2.10  
1
2
PIN 1  
0.95 BSC  
1.90 BSC  
1.12  
0.89  
0.20  
0.08  
0.10  
0.01  
0.60  
0.50  
0.40  
0.50  
0.30  
0.54  
REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS TO-236AB  
SOT-23 Tape and Reel  
Dimensions shown in millimeters  
7" REEL 100.00  
OR  
4.10  
4.00  
3.90  
1.10  
1.00  
0.90  
13" REEL 330.00  
14.40 MAX  
1.55  
1.50  
1.50  
2.05  
2.00  
1.95  
0.35  
0.30  
0.25  
1.85  
1.75  
1.65  
1.50 MIN  
2.80  
2.70  
2.60  
13.20  
13.00  
12.80  
7" REEL 50.00 MIN  
OR  
13" REEL 100.00 MIN  
20.20  
MIN  
8.30  
8.00  
7.70  
3.55  
3.50  
3.45  
3.20  
3.10  
2.90  
0.75 MIN  
1.00 MIN  
9.90  
8.40  
8.40  
DIRECTION OF UNREELING  
Revision History  
Location  
Page  
12/02—Data Sheet changed from REV. B to REV. C.  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
TPC 3 replaced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Changes toTEMPERATURE PERFORMANCE section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4 replaced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Changes to OUTPUTVOLTAGE HYSTERESIS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SOT-23 package updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
REV. C  
–13–  
–14–  
–15–  
–16–  

相关型号:

AD1583ART-REEL7

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1583ART-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO3, TO-236AB, SOT-23, 3 PIN
ROCHESTER

AD1583ARTRL

Voltage Reference
ETC

AD1583ARTRL7

Voltage Reference
ETC

AD1583ARTZ-R2

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1583ARTZ-REEL7

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1583B

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1583BRT

Voltage Reference
ETC

AD1583BRT-R2

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1583BRT-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO3, TO-236AB, SOT-23, 3 PIN
ROCHESTER

AD1583BRT-REEL

暂无描述
ADI

AD1583BRT-REEL7

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI