5962-9961003HXA [ADI]

Dual Channel, 12-Bit, 105 MSPS IF Sampling A/D Converter With Analog Input Signal Conditioning;
5962-9961003HXA
型号: 5962-9961003HXA
厂家: ADI    ADI
描述:

Dual Channel, 12-Bit, 105 MSPS IF Sampling A/D Converter With Analog Input Signal Conditioning

转换器
文件: 总20页 (文件大小:1493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Channel, 12-Bit 105 MSPS IF Sampling  
A/D Converter with Analog Input  
Signal Conditioning  
a
AD10200  
FEATURES  
Dual, 105 MSPS Minimum Sample Rate  
Channel-Channel Isolation, >80 dB  
includes two wide-dynamic range ADCs. Each ADC has a  
transformer coupled front-end optimized for Direct-IF sampling.  
The AD10200 has on-chip track-and-hold circuitry, and utilizes  
AC-Coupled Signal Conditioning Included  
Gain Flatness up to Nyquist: < 0.2 dB  
Input VSWR 1.1:1 to Nyquist  
80 dB Spurious-Free Dynamic Range  
Two’s Complement Output Format  
3.3 V or 5 V CMOS-Compatible Output Levels  
0.850 W per Channel  
an innovative architecture to achieve 12-bit, 105 MSPS perfor-  
mance. The AD10200 uses innovative high-density circuit  
design to achieve exceptional matching and performance while  
still maintaining excellent isolation, and providing for significant  
board area savings.  
The AD10200 operates with 5.0 V supply for the analog-to-  
digital conversion. Each channel is completely independent  
allowing operation with independent encode and analog inputs.  
The AD10200 is packaged in a 68-lead ceramic chip carrier  
package. Manufacturing is done on Analog Devices, Inc. MIL-  
38534 Qualified Manufacturers Line (QML) and components  
are available up to Class-H (–50°C to +125°C).  
Industrial and Military Grade  
APPLICATIONS  
Radar IF Receivers  
Phased Array Receivers  
Communications Receivers  
Secure Communications  
GPS Antijamming Receivers  
Multichannel, Multimode Receivers  
PRODUCT HIGHLIGHTS  
1. Guaranteed sample rate of 105 MSPS.  
2. Input signal conditioning with full power bandwidth to  
250 MHz.  
PRODUCT DESCRIPTION  
The AD10200 is a full channel ADC solution with on-module  
signal conditioning for improved dynamic performance and  
fully matched channel-to-channel performance. The module  
3. Fully tested/characterized performance at 121 MHz AIN.  
4. Optimized for IF sampling.  
FUNCTIONAL BLOCK DIAGRAM  
A
A2  
A
B2  
IN  
7
IN  
63  
34  
50  
D00A  
(LSB)  
D00B  
(LSB)  
D01A 33  
49 D01B  
T1A  
T1B  
32  
48  
D02A  
D02B  
D03A 31  
47 D03B  
46 D04B  
45 D05B  
50  
50⍀  
D04A  
30  
T/H  
T/H  
AD10200  
D05A 29  
28  
42  
D06A  
D06B  
D07A 25  
41 D07B  
40 D08B  
ADC  
ADC  
24  
D08A  
12  
12  
12  
12  
D09A 23  
D10A 22  
D09B  
D10B  
39  
38  
OUTPUT RESISTORS  
OUTPUT RESISTORS  
21  
D11A  
(MSB)  
37 D11B  
(MSB)  
TIMING  
REF  
REF  
56  
TIMING  
18  
17  
3
53  
54  
ENCODEA ENCODEA  
REF_A_OUT  
REF_B_OUT  
ENCODEB ENCODEB  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
©Analog Devices, Inc., 2001–2016  
AD10200* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
SOFTWARE AND SYSTEMS REQUIREMENTS  
Military Part Cross-Reference Guide  
Military Products by Function  
EVALUATION KITS  
AD10200 Evaluation Board  
Military Products by GENERIC Part Number  
SMD to Generic Cross Reference  
DOCUMENTATION  
Application Notes  
TOOLS AND SIMULATIONS  
Visual Analog  
AN-280: Mixed Signal Circuit Technologies  
AN-282: Fundamentals of Sampled Data Systems  
REFERENCE MATERIALS  
Technical Articles  
AN-297: Test Video A/D Converters Under Dynamic  
Conditions  
Class T Satellite Products  
AN-302: Exploit Digital Advantages in an SSB Receiver  
Correlating High-Speed ADC Performance to Multicarrier  
AN-342: Analog Signal-Handling for High Speed and  
3G Requirements  
Accuracy  
DNL and Some of its Effects on Converter Performance  
MS-2210: Designing Power Supplies for High Speed ADC  
AN-345: Grounding for Low-and-High-Frequency Circuits  
AN-501: Aperture Uncertainty and ADC System  
Performance  
Multi-Channel Analog-to-Digital Converter Module  
Integration  
AN-715: A First Approach to IBIS Models: What They Are  
and How They Are Generated  
DESIGN RESOURCES  
AD10200 Material Declaration  
PCN-PDN Information  
AN-737: How ADIsimADC Models an ADC  
AN-741: Little Known Characteristics of Phase Noise  
AN-756: Sampled Systems and the Effects of Clock Phase  
Noise and Jitter  
Quality And Reliability  
Symbols and Footprints  
AN-835: Understanding High Speed ADC Testing and  
Evaluation  
DISCUSSIONS  
View all AD10200 EngineerZone Discussions.  
AN-905: Visual Analog Converter Evaluation Tool Version  
1.0 User Manual  
AN-935: Designing an ADC Transformer-Coupled Front  
End  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
Data Sheet  
AD10200: Dual Channel, 12-Bit 105 MSPS IF Sampling A/D  
Converter with Analog Input Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD10200–SPECIFICATIONS1  
(VDD = 3.3 V, VCC = 5.0 V; ENCODE = 105 MSPS, unless otherwise noted)  
Test  
MIL  
Parameter  
Temp  
Level  
Subgroup  
Min  
Typ  
Max  
Unit  
RESOLUTION  
12  
Bits  
DC ACCURACY  
Differential Nonlinearity  
Integral Nonlinearity  
No Missing Codes  
Gain Error2  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
I
I
I
12  
12  
1, 2, 3  
1, 2, 3  
1, 2, 3  
–0.99  
–3  
0.5  
0.75  
Guaranteed  
1
+0.99  
+3  
LSB  
LSB  
–9  
–12  
+9  
+12  
% FS  
LSB  
Output Offset  
ANALOG INPUT  
Input Voltage Range  
Input Impedance  
25°C  
25°C  
Full  
Full  
Full  
V
V
IV  
IV  
IV  
2.048  
50  
1.1:1  
250  
V p-p  
Ratio  
MHz  
MHz  
Input VSWR3  
12  
12  
12  
1.25:1  
2.6  
Analog Input Bandwidth, High  
Analog Input Bandwidth, Low  
200  
1
ANALOG REFERENCE  
Output Voltage  
Load Current  
Full  
25°C  
Full  
I
V
V
1, 2, 3  
2.4  
2.5  
5
50  
V
mA  
ppm/°C  
Tempco  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Duty Cycle  
Full  
Full  
Full  
25°C  
25°C  
Full  
Full  
25°C  
25°C  
I
4, 5, 6  
12  
12  
105  
45  
MSPS  
MSPS  
%
ns  
ps rms  
ns  
ns  
ns  
ns  
IV  
IV  
V
10  
55  
50  
Aperture Delay (tA)  
1.0  
0.25  
5.3  
5.5  
3.5  
3.3  
Aperture Uncertainty (Jitter)  
V
Output Valid Time (tV)4  
Output Propagation Delay (PD  
IV  
IV  
V
12  
12  
12  
12  
3.0  
4.5  
4
)
8.0  
Output Rise Time (tR)  
Output Fall Time (tF)  
V
DIGITAL INPUTS  
Encode Input Common Mode  
Differential Input (Enc, Enc)  
Logic “1” Voltage  
Logic “0” Voltage  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
25°C  
IV  
IV  
IV  
IV  
IV  
V
12  
12  
12  
12  
12  
1.2  
0.4  
2.0  
1.6  
2.0  
5.0  
V
V
V
V
kΩ  
pF  
0.8  
8
3
5
4.5  
Input Capacitance  
DIGITAL OUTPUTS  
Logic “1” Voltage4  
Logic “0” Voltage4  
Output Coding  
Full  
Full  
VI  
VI  
1, 2, 3  
1, 2, 3  
3.1  
3.3  
0
V
V
0.2  
Two’s Complement  
POWER SUPPLY5  
Power Dissipation6  
Power Supply Rejection Ratio  
I (DVDD) Current  
Full  
Full  
Full  
Full  
I
IV  
I
I
1, 2, 3  
12  
1, 2, 3  
1, 2, 3  
1800  
0.5  
25  
2200  
5
40  
mW  
mV/V  
mA  
I (AVCC) Current  
340  
410  
mA  
DYNAMIC PERFORMANCE  
Signal-to-Noise Ratio (SNR)7  
(Without Harmonics)  
f
f
f
f
IN = 10 MHz  
IN = 41 MHz  
IN = 71 MHz  
IN = 121 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
V
I
II  
I
II  
I
II  
67  
66  
66.5  
65  
66.4  
64  
65  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
4
5, 6  
4
5, 6  
4
64  
62  
62.5  
61.5  
61  
5, 6  
61  
64  
–2–  
REV. B  
AD10200  
Test  
MIL  
Parameter  
Temp  
Level  
Subgroup  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
(Continued)  
Signal-to-Noise Ratio (SINAD)8  
(With Harmonics)  
f
f
f
f
IN = 10 MHz  
IN = 41 MHz  
IN = 71 MHz  
IN = 121 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
V
I
II  
I
II  
I
II  
66  
63  
65.5  
63  
63.5  
60  
58.5  
55  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
4
5, 6  
4
5, 6  
4
5, 6  
63  
60.5  
61  
57  
56  
53  
Spurious Free Dynamic Range9  
fIN = 10 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
V
I
II  
I
II  
I
II  
81  
70  
81  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
f
f
f
IN = 41 MHz  
IN = 71 MHz  
IN = 121 MHz  
4
5, 6  
4
5, 6  
4
5, 6  
73  
67.5  
67  
60  
61  
74  
65  
58  
55.5  
Two-Tone Intermodulation  
Distortion10 (IMD)  
f
f
f
IN = 10 MHz; fIN = 12 MHz  
IN = 71 MHz; fIN = 72 MHz  
IN = 121 MHz; fIN = 122 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
V
V
V
I
86  
81  
70  
65  
62  
57  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
4
5, 6  
55.5  
53  
II  
Channel-to-Channel Isolation11  
fIN = 121 MHz  
Full  
IV  
12  
80  
85  
dB  
NOTES  
1All ac specifications tested by driving ENCODE and ENCODE differentially.  
2Gain Error measured at 2.5 MHz.  
3Input VSWR guaranteed 10 MHz to 200 MHz.  
4tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is  
not to exceed an ac load of 10 pF or a dc current of 40 mA.  
5Supply voltages should remain stable within 5% for normal operation.  
6Power dissipation measured with encode at rated speed and 0 dBm analog input.  
7Analog Input signal power at –1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first 5 harmonic removed). Encode = 105 MSPS. SNR  
is reported in dBFS, related back to converter full scale.  
8Analog Input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. Encode = 105 MSPS. SINAD  
is reported in dBFS, related back to converter full scale.  
9Analog Input signal equal –1 dBFS; SFDR is ratio of converter full scale to worst spur.  
10Both input tones at –7 dBFS; two tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product. f1 = x MHz  
100 kHz, f2 = x MHz 100 kHz.  
11Channel-to-Channel isolation tested with A Channel/50 terminated (AINA2) grounded and a full-scale signal applied to B Channel (AINB2).  
Specifications subject to change without notice.  
REV. B  
–3–  
AD10200  
ABSOLUTE MAXIMUM RATINGS1, 2  
Table I. Output Coding (VREF = 2.5 V) (Two’s Complement)  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . 5 Vp-p(18 dBm)  
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –50°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 175°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . . 150°C  
Code  
AIN (V)  
Digital Output  
+2047  
0
–1  
+1.024  
0
–0.00049  
0111 1111 1111  
0000 0000 0000  
1111 1111 1111  
–2048  
–1.024  
1000 0000 0000  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
2Typical thermal impedances for “Z” package:  
θJC = 2.22°C/W; θJA = 24.3°C/W.  
EXPLANATION OF TEST LEVELS  
Test Level  
I. 100% production tested.  
II. 100% production tested at 25°C and sample tested at  
specific temperatures.  
III. Sample tested only.  
IV. Parameter is guaranteed by design and characterization  
testing.  
V. Parameter is a typical value only.  
VI. 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD10200 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
Revision History  
Location  
Page  
8/2016 Data Sheet changed from REV. A to REV. B.  
Change Operating Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1, 4  
Moved Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Changes to Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Updated Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data Sheet changed from REV. 0 to REV. A.  
Edit to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edit to Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Edit to ENCODE Inputs section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Edit to Figure 9a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
REV. B  
–4–  
AD10200  
PIN CONFIGURATION  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
PIN 1  
AGNDA  
AGNDA  
DNC  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
AGNDB  
AGNDB  
DNC  
IDENTIFIER  
AGNDA  
DNC  
AV  
CC  
DNC  
REF_B_OUT  
AGNDB  
AGNDA  
ENCODEB  
ENCODEB  
AGNDB  
ENCODEA  
ENCODEA  
AGNDA  
AD10200  
TOP VIEW  
(Not to Scale)  
DV  
CC  
D0B (LSB)  
D1B  
DV  
CC  
(MSB) D11A  
D10A  
D2B  
D9A  
D3B  
D8A  
D4B  
D7A  
D5B  
DGNDA  
DGNDB  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
Function  
Pin No.  
Mnemonic  
1
SHIELD  
AGNDA  
Internal Ground Shield between Channels  
A Channel Analog Ground. A and B grounds should be connected as close to  
the device as possible.  
2, 5, 9–11, 13, 16, 19, 35  
3
VREF_A_OUT  
NC  
A Channel Internal Voltage Reference  
No Connection  
6, 62  
7
AINA2  
Analog Input for A Side ADC  
4, 8, 12, 15, 57, 58, 64, 67  
DNC  
Do Not Connect  
14, 66  
17  
18  
20  
AVCC  
Analog Positive Supply Voltage (Nominally 5.0 V)  
Complement of Encode  
Data conversion initiated on the rising edge of ENCODE input.  
Digital Positive Supply Voltage (Nominally 3.3 V)  
Digital Outputs for ADC A. D0 (LSB)  
ENCODEA  
ENCODEA  
DVCC  
D11A–D7A,  
D6A–D0A  
DGNDA  
AGNDB  
21–25, 28–34  
26, 27  
36, 52, 55, 59–61, 65, 68  
A Channel Digital Ground  
B Channel Analog Ground. A and B grounds should be connected as close to  
the device as possible.  
37–42, 45–50  
D11B–D6B,  
D5B–D0B  
DGNDB  
Digital Outputs for ADC B. D0 (LSB)  
43, 44  
51  
53  
54  
56  
B Channel Digital Ground  
DVCC  
Digital Positive Supply Voltage (Nominally 3.3 V)  
Data conversion initiated on rising edge of ENCODE input.  
Complement of Encode  
B Channel Internal Voltage Reference  
Analog Input for B Side ADC  
ENCODEB  
ENCODEB  
VREF_B_OUT  
AINB2  
63  
REV. B  
–5–  
AD10200  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Overvoltage Recovery Time  
The amount of time required for the converter to recover to  
0.02% accuracy after an analog input signal of the specified  
percentage of full scale is reduced to midscale.  
Power Supply Rejection Ratio  
Aperture Delay  
The ratio of a change in output offset voltage to a change in  
power supply voltage.  
The delay between the 50% point on the rising edge of the  
ENCODE command and the instant at which the analog input  
is sampled.  
Signal-to-Noise-and-Distortion (SINAD)  
The ratio of the rms signal amplitude (set a 1 dB below full scale)  
to the rms value of the sum of all other spectral components,  
excluding the first five harmonics and dc. [May be reported in  
dBc (i.e., degrades as signal levels is lowered) or in dBFS (always  
related back to converter full scale)].  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Differential Nonlinearity  
The deviation of any code from an ideal 1 LSB step.  
Signal-to-Noise Ratio (without Harmonics)  
Encode Pulsewidth/Duty Cycle  
The ratio of the rms signal amplitude (set a I dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc. [May be  
reported in dBc (i.e., degrades as signal levels is lowered) or in  
dBFS (always related back to converter full scale).]  
Pulsewidth high is the minimum amount of time that the  
ENCODE pulse should be left in Logic “1” state to achieve  
rated performance; pulsewidth low is the minimum time  
ENCODE pulse should be left in low state. At a given clock  
rate, these specs define an acceptable Encode duty cycle.  
Spurious-Free Dynamic Range  
Harmonic Distortion  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic. [May be reported in dBc  
(i.e., degrades as signal levels is lowered) or in dBFS (always  
related back to converter full scale).]  
The ratio of the rms signal amplitude to the rms value of the  
worst harmonic component.  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
Transient Response  
The time required for the converter to achieve 0.02% accu-  
racy when a one-half full-scale step function is applied to the  
analog input.  
Minimum Conversion Rate  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more that 3 dB below the guaranteed limit.  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms value of  
the worst third order intermodulation product; reported in dBc.  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
Output Propagation Delay  
Voltage Standing-Wave Ratio (VSWR)  
The ratio of the amplitude of the elective field at a voltage maxi-  
mum to that at an adjacent voltage minimum.  
The delay between the 50% point of the rising edge of ENCODE  
command and the time when all output data bits are within  
valid logic levels.  
–6–  
REV. B  
Typical Performance CharacteristicsAD10200  
0
؊10  
0
ENCODE = 105 MSPS  
= 41MHz (1dBFS)  
SNR = 66.06dBFS  
SFDR = 80.59dBc  
ENCODE = 105 MSPS  
= 10MHz (–1dBFS)  
SNR = 66.84dBFS  
SFDR = 82.28dBc  
؊10  
؊20  
A
A
IN  
IN  
؊20  
؊30  
؊30  
؊40  
؊40  
؊50  
؊50  
؊60  
؊60  
؊70  
؊70  
؊80  
؊80  
؊90  
؊90  
؊100  
؊110  
؊120  
؊130  
؊100  
؊110  
؊120  
؊130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY – MHz  
FREQUENCY MHz  
TPC 1. Single Tone @ 10 MHz  
TPC 4. Single Tone @ 41 MHz  
0
؊10  
0
؊10  
ENCODE = 105 MSPS  
= 121MHz (1dBFS)  
SNR = 64.92dBFS  
SFDR = 64.73dBc  
ENCODE = 105 MSPS  
IN  
SNR = 66.04dBFS  
SFDR = 79.71dBc  
A
A
= 71MHz (1dBFS)  
IN  
؊20  
؊20  
؊30  
؊30  
؊40  
؊40  
؊50  
؊50  
؊60  
؊60  
؊70  
؊70  
؊80  
؊80  
؊90  
؊90  
؊100  
؊110  
؊120  
؊130  
؊100  
؊110  
؊120  
؊130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 2. Single Tone @ 71 MHz  
TPC 5. Single Tone @ 121 MHz  
0
؊10  
0
؊10  
ENCODE = 105 MSPS  
= 121MHz (6dBFS)  
ENCODE = 105 MSPS  
A = 201MHz (10dBFS)  
IN  
A
IN  
SNR = 66.9dBFS  
SFDR = 65.57dBc  
SNR = 66.84dBFS  
SFDR = 64.57dBc  
؊20  
؊20  
؊30  
؊30  
؊40  
؊40  
؊50  
؊50  
؊60  
؊60  
؊70  
؊70  
؊80  
؊80  
؊90  
؊90  
؊100  
؊110  
؊120  
؊130  
؊100  
؊110  
؊120  
؊130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 6. Single Tone @ 201 MHz  
TPC 3. Single Tone @ 121 MHz  
–7–  
REV. B  
AD10200  
0
0
؊10  
ENCODE = 105 MSPS  
= 71MHz & 72MHz (7dBFS)  
SFDR = 74.8dBc  
ENCODE = 105 MSPS  
= 37MHz & 38MHz (10dBFS)  
SFDR = 79.84dBc  
؊10  
A
A
IN  
IN  
؊20  
؊30  
؊20  
؊30  
؊40  
؊40  
؊50  
؊50  
؊60  
؊60  
؊70  
؊70  
؊80  
؊80  
؊90  
؊90  
؊100  
؊110  
؊120  
؊130  
؊100  
؊110  
؊120  
؊130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 7. Two-Tone @ 37 MHz/38 MHz  
TPC 10. Two-Tone @ 71 MHz/72 MHz  
3.0  
2.5  
0
؊10  
ENCODE = 105 MSPS  
DNL MAX = 0.486 Codes  
DNL MIN = 0.431 Codes  
ENCODE = 105 MSPS  
IN  
SFDR = 63.8dBc  
A
= 120MHz & 121MHz (7dBFS)  
؊20  
؊30  
2.0  
؊40  
1.5  
؊50  
؊60  
1.0  
؊70  
؊80  
0.5  
؊90  
0.0  
؊100  
؊110  
؊120  
؊130  
؊0.5  
؊1.0  
0
512  
1024  
1536  
2048  
2560 3072  
3584  
4096  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY MHz  
TPC 11. Differential Nonlinearity  
TPC 8. Two-Tone @ 120 MHz/121 MHz  
3
2
0
ENCODE = 105 MSPS  
3dB = 261MHz  
ENCODE = 105 MSPS  
INL MAX = 0.874 Codes  
INL MIN = 0.895 Codes  
؊
؊
؊
1
2
3
1
؊
؊
4
5
0
؊6  
؊7  
؊1  
؊2  
؊3  
؊8  
؊9  
؊10  
3.0 32.7 62.4 92.1 121.8 151.5 181.2 210.9 240.6 270.3 300.0  
MHz  
0
512  
1024  
1536  
2048  
2560 3072  
3584  
4096  
TPC 12. Gain Flatness  
TPC 9. Integral Nonlinearity  
–8–  
REV. B  
AD10200  
11  
10MHz = 1.0149  
50MHz = 1.085  
100MHz = 1.130  
150MHz = 1.092  
10  
9
8
7
6
5
4
3
2
1
10MHz = 50.22 + j.173  
50MHz = 48.79 j4.2  
100MHz = 46.95 j5.9  
150MHz = 48.55 j4.66  
3.0 32.7 62.4 92.1 121.8 151.5 181.2 210.9 240.6 270.3 300.0  
MHz  
TPC 13. Input Impedance S11  
TPC 14. Voltage Standing Wave Ratio (VSWR)  
SAMPLE N  
SAMPLE N+10  
SAMPLE N+11  
SAMPLE N1  
AIN  
SAMPLE N+1  
SAMPLE N+9  
1/fS  
ENCODE  
ENCODE  
tPD  
tV  
DATA NϷ11  
DATA NϷ10  
NϷ9  
NϷ2  
DATA NϷ1  
DATA N  
DATA N+1  
D11ϷD0  
Figure 1. Timing Diagram  
V
CC  
V
V
CC  
CC  
17k  
8k⍀  
17k⍀  
Q1  
NPN  
ENCODE  
ENCODE  
100⍀  
100⍀  
8k⍀  
V
OUTPUT  
REF  
Figure 2. Equivalent Encode Input Circuit  
Figure 4. Equivalent Voltage Reference Output Circuit  
V
CC  
V
CC  
5k  
7k⍀  
5k⍀  
A
IN  
50⍀  
100  
DIGITAL  
OUTPUT  
7k⍀  
Figure 3. Equivalent Digital Output Circuit  
Figure 5. Equivalent Analog Input Circuit  
–9–  
REV. B  
AD10200  
APPLICATION NOTES  
Theory of Operation  
Often, the cleanest clock source is a crystal oscillator producing  
a pure sine wave. In this configuration, or with any roughly  
symmetrical clock input, the input can be ac-coupled and biased  
to a reference voltage that also provides the ENCODE. This  
ensures that the reference voltage is centered on the encode signal.  
The AD10200 is a high-dynamic range dual 12-bit, 105 MHz  
subrange pipeline converter that uses switched capacitor  
architecture. The analog input section uses AINA2/AINB2 at  
2.048 V p-p with an input impedance of 50 . The analog input  
includes an ac-coupled wide-band 1:1 transformer, which provides  
high-dynamic range and SNR while maintaining VSWR and  
gain flatness. The ADC includes a high-bandwidth linear track/  
hold that gives excellent spurious performance up to and beyond  
the Nyquist rate. The high-bandwidth track/hold has a low jitter  
of 0.25 ps rms, leading to excellent SNR and SFDR performance.  
AC-coupled differential PECL/ECL encode inputs are recom-  
mended for optimum performance.  
Digital Outputs  
The digital outputs are TTL/CMOS-compatible and a separate  
output power supply pin supports interfacing with 3.3 V logic.  
Analog Input  
The analog input is a single ended ac-coupled high performance  
1:1 transformer with an input impedance of 50 to 105 MHz.  
The nominal full scale input is 2.048 V p-p.  
Special care was taken in the design of the analog input section  
of the AD10200 to prevent damage and corruption of data when  
the input is overdriven.  
USING THE AD10200  
ENCODE Input  
Voltage Reference  
Any high speed A/D converter is extremely sensitive to the quality  
of the sampling clock provided by the user. A track/hold circuit  
is essentially a mixer, and any noise, distortion, or timing jitter  
on the clock will be combined with the desired signal at the A/D  
output. For that reason, considerable care has been taken in the  
design of the ENCODE input of the AD10200, and the user is  
advised to give commensurate thought to the clock source. The  
ENCODE input are fully TTL/CMOS compatible. For opti-  
mum performance, the AD10200 must be clocked differentially.  
A stable and accurate 2.5 V voltage reference is designed into  
the AD10200 (VREFOUT). An external voltage reference is  
not required.  
Timing  
The AD10200 provides latched data outputs, with 10 pipeline  
delays. Data outputs are available one propagation delay (tPD  
)
after the rising edge of the encode command (see Figure 1). The  
length of the output data lines and loads placed on them should  
be minimized to reduce transients within the AD10200; these  
transients can detract from the converter's dynamic performance.  
Note that the ENCODE inputs cannot be driven directly from  
PECL level signals (VIHD is 3.5 V max). PECL level signals can  
easily be accommodated by ac coupling as shown in Figure 6.  
Good performance is obtained using an MC10EL16 in the  
circuit to drive the encode inputs.  
The minimum guaranteed conversion rate of the AD10200 is  
10 MSPS. At internal clock rates below 10 MSPS, dynamic  
performance may degrade. Therefore, input clock rates below  
10 MHz should be avoided.  
0.1F  
AD10200  
ENCODE  
GROUNDING AND DECOUPLING  
Analog and Digital Grounding  
PECL  
GATE  
ENCODE  
Proper grounding is essential in any high speed, high resolution  
system. Multilayer printed circuit boards (PCBs) are recom-  
mended to provide optimal grounding and power schemes. The  
use of ground and power planes offers distinct advantages:  
0.1F  
510⍀  
510⍀  
GND  
Figure 6. AC Coupling to ENCODE Inputs  
ENCODE Voltage Level Definition  
The voltage level definitions for driving ENCODE and ENCODE  
1. The minimization of the loop area encompassed by a signal  
and its return path.  
2. The minimization of the impedance associated with ground  
and power paths.  
in differential mode are shown in Figure 7.  
ENCODE Inputs  
3. The inherent distributed capacitor formed by the power  
plane, PCB insulation and ground plane.  
Differential Signal Amplitude (VID)  
500 mV min,  
750 mV nom  
5.0 V max  
These characteristics result in both a reduction of electromagnetic  
interference (EMI) and an overall improvement in performance.  
High Differential Input Voltage (VIHD  
)
Low Differential Input Voltage (VILD  
)
0 V min  
Common-Mode Input (VICN  
)
1.25 V min, 1.6 V nom  
It is important to design a layout that prevents noise from cou-  
pling to the input signal. Digital signals should not be run in  
parallel with input signal traces and should be routed away from  
the input circuitry. The PCB should have a ground plane covering  
all unused portions of the component side of the board to pro-  
vide a low impedance path and manage the power and ground  
currents. The ground plane should be removed from the area  
near the input pins to reduce stray capacitance.  
ENCODE  
V
V
IHD  
V
ID  
ICM  
ENCODE  
V
ILD  
V
IHS  
ENCODE  
0.1F  
V
ILS  
Figure 7. Differential Input Levels  
–10–  
REV. B  
AD10200  
LAYOUT INFORMATION  
EVALUATION BOARD  
The schematic of the evaluation board (Figure 8) represents  
a typical implementation of the AD10200. The pinout of the  
AD10200 is very straightforward and facilitates ease of use and  
the implementation of high frequency/high resolution design  
practices. It is recommended that high quality ceramic chip  
capacitors be used to decouple each supply pin to ground directly  
at the device. All capacitors can be standard high quality ceramic  
chip capacitors.  
The AD10200 evaluation board (Figure 9) is designed to  
provide optimal performance for evaluation of the AD10200  
analog-to-digital converter. The board encompasses everything  
needed to ensure the highest level of performance for evaluating  
the AD10200. The board requires an analog input signal, encode  
clock and power supply inputs. The clock is buffered on-board  
to provide clocks for the latches. The digital outputs and out  
clocks are available at the standard 40-pin connectors J1 and J2.  
Care should be taken when placing the digital output runs.  
Because the digital outputs have such a high-slew rate, the  
capacitive loading on the digital outputs should be minimized.  
Circuit traces for the digital outputs should be kept short and  
connect directly to the receiving gate. Internal circuitry buffers  
the outputs of the ADC through a resistor network to eliminate  
the need to externally isolate the device from the receiving gate.  
Power to the analog supply pins is connected via banana jacks.  
The analog supply powers the associated components and the  
analog section of the AD10200. The digital outputs of the  
AD10200 are powered via banana jacks with 3.3 V. Contact the  
factory if additional layout or applications assistance is required.  
Figure 8. Evaluation Board Mechanical Layout  
–11–  
REV. B  
AD10200  
A G N D B  
D G N D B  
4 3  
D G N D B  
D 6 B  
A G N D B  
6 1  
I N  
B 1 A  
D 6 B  
6 2  
6 3  
4 2  
I N  
D 7 B  
4 1  
D 7 B  
D 8 B  
D 9 B  
B 2 A  
S D I N _ B  
A G N D B  
D 8 B  
4 0  
( N C )  
6 4  
A G N D A  
6 5  
D 9 B  
3 9  
5 V ؉ A B  
5 V ؉ A B _  
D 1 0 B  
3 8  
D 1 0 B  
6 6  
6 7  
S C L K _ B  
D 1 1 B ( M S B B D ) 1 1 B  
( N C )  
3 7  
A G N D B  
A G N D B  
A G N D B  
A G N D A  
D 0 A  
A G N D B  
S H I E L D  
6 8  
3 6  
L I D  
1
A G N D A  
3 5  
A G N D A  
A G N D A  
D 0 A ( L S B A )  
3 4  
2
R E F _ A  
S D I N _ A  
A G N D A  
D 1 A  
D 2 A  
D 1 A  
3
3 3  
D 2 A  
3 2  
D 3 A  
( N C )  
4
A G N D A  
5
D 3 A  
D 4 A  
D 5 A  
D 6 A  
3 1  
D 4 A  
3 0  
D 5 A  
2 9  
D 6 A  
2 8  
D G N D A  
2 7  
I N  
A 1 A  
6
7
5
I N  
A 2 A  
V F U _ A  
A G N D A  
A G N D A  
D G N D A  
9
Figure 9a. Evaluation Board  
–12–  
REV. B  
AD10200  
U14  
5
NR  
OUT  
ADP3330  
1
3
2
ERR  
+5VAA_  
IN  
R42  
SD  
SD  
AGNDA  
+3.3VA  
AGNDA  
U2  
100⍀  
C13  
6
4
0.47F  
C1  
C7  
0.1F  
1
8
0.1F  
NC  
D
VCC  
Q
J5  
ENCODE  
SMA  
2
3
4
7
6
5
ENCAB  
ENCAB  
DB  
VBB  
QB  
VEE  
J12  
C8  
0.1F  
R1  
50⍀  
SMA  
AGNDA  
C2  
0.1F  
MC10EL16  
R43  
100⍀  
AGNDA  
R41  
50⍀  
R56  
33k⍀  
C6  
0.1F  
AGNDA  
AGNDA  
DGNDA  
R3  
100⍀  
DGNDA  
DGNDA  
+3.3VA  
C5  
0.1F  
U3  
R58  
33k⍀  
AGNDA  
1
2
3
4
8
7
6
5
NC  
D
DB  
VCC  
Q
QB  
U4  
LATCHA  
E23  
1
2
3
4
8
+3.3VA  
D0  
VCC  
Q0  
Q1  
7
6
5
D0B  
D1B  
D1  
R4  
100⍀  
VBB  
VEE  
E19  
BUFLATA  
VEE  
MC10EL16  
DGNDA  
MC100EPT23  
DGNDA  
DGNDA  
U15  
5
NR  
OUT  
NC = NO CONNECT  
1
3
ERR  
ADP3330  
IN  
2
+5VAB_  
R63  
SD  
SD  
AGNDB  
+3.3VB  
AGNDB  
100⍀  
C27  
6
4
0.47F  
U11  
VCC  
C22  
C24  
0.1F  
1
8
0.1F  
NC  
D
DB  
J10  
ENCODE  
SMA  
2
3
4
7
6
5
ENCBB  
ENCB  
Q
QB  
J11  
C28  
0.1F  
VBB  
VEE  
R60  
50⍀  
SMA  
AGNDB  
C23  
0.1F  
MC10EL16  
R64  
100⍀  
AGNDB  
R61  
50⍀  
R38  
33k⍀  
C25  
0.1F  
AGNDB  
AGNDB  
DGNDB  
R3  
100⍀  
DGNDB  
DGNDA  
+3.3VDB  
C26  
U9  
R39  
33k⍀  
AGNDB  
1
8
7
6
5
0.1F  
U10  
NC  
D
DB  
VBB  
VCC  
Q
QB  
LATCHB  
E24  
2
3
4
1
2
3
4
8
+3.3VB  
D0  
VCC  
Q0  
Q1  
7
6
5
D0B  
D1B  
D1  
VEE  
R66  
100⍀  
E22  
VEE  
MC10EL16  
BUFLATB  
DGNDB  
MC100EPT23  
DGNDB  
DGNDB  
NC = NO CONNECT  
E42  
E44  
E48  
E41  
E43  
E47  
BANANA JACKS FOR GNDS AND PWRS  
E3  
E4  
AGNDB  
AGNDA  
E66  
E65  
E67  
E70  
E72  
E73  
E76  
E81  
E68  
E69  
E71  
E74  
E75  
E82  
E33  
DGNDB  
DGNDB  
DGNDB  
DGNDA  
DGNDA  
AGNDA  
E34  
DGNDA  
E29  
E36  
E38  
E40  
E30  
E35  
E37  
E39  
DGNDA  
E45  
E46  
E79  
E84  
E80  
E83  
DGNDB  
AGNDB  
STAND OFFS ON THE BOARD  
SO4  
SO1  
SO2 SO5  
SO3 SO6  
Figure 9b. Evaluation Board  
–13–  
REV. B  
AD10200  
BILL OF MATERIALS LIST FOR AD10200 EVAL BOARD  
Qty. Component Name  
Ref Des  
Value  
Description  
M/S P/Ns  
2
1
2
4
4
74LCX16373MTD  
AD10200BZ  
ADP3330  
BRES0805  
BRES0805  
U16, U17  
U1  
U14, U15  
R38, R39, R56, R58  
R1, R41, R60,  
R61  
74LCX16374MTD (Fairchild)  
AD10200BZ  
ADP3330ART-3.3-RL7 (Analog)  
ERJ6GEYJ333V (Panasonic)  
ERJ6GEYJ510V (Panasonic)  
SM 3.3 V Regulator  
SM 0805 Resistor  
SM 0805 Resistor  
33 k  
50 Ω  
8
BRES0805  
CAP2  
R3, R4, R42, R43,  
R63, R64, R65, R66  
C1, C2, C5, C6,  
C7, C8, C9, C10,  
C12, C16, C17, C18,  
C20, C21, C22, C23,  
C24, C25, C26, C28,  
C33, C34, C35  
C13, C27, C38, C39  
100 Ω  
0.1 µF  
SM 0805 Resistor  
ERJ6GEYJ101V (Panasonic)  
23  
SM 0805 Capacitor  
GRM40X7R104K025BL  
(MENA)  
4
CAP2  
0.47 µF  
47 Ω  
SM 1206 Capacitor  
VJ1206U474MFXMB  
(VITRAMON)  
2
4
4
10  
2
N49DM  
IND2  
MC10EL16  
BJACK  
MC100ELT23  
POLCAP2  
J1, J2  
2×20×100 Male Connector  
Inductor  
TSW-120-08G-D (Samtec)  
2743019447 (Fair Ride)  
MC1016EP16D (Motorola)  
108-0740-001 (Johnson Comp.)  
SY100ELT23L (Micrel-Synergy)  
T491C106M016A57280  
(KEMET)  
L1, L2, L3, L4  
U2, U3 U9, U11  
BJ1 – BJ10  
U4, U10  
C3, C4, C14, C15,  
C29, C30  
R47, R48, R49,  
R50, R51, R52,  
R53, R54  
POWER JACK  
6
10 µF  
0 Ω  
SM 1812 Polar Capacitor  
SM 0805 Resistor  
8
RES2  
ERJ-6GEY0R00V (Panasonic)  
4
24  
RES4  
RES2  
R7, R8, R71, R72  
R9, R10, R11, R12,  
R13, R14, R15, R16,  
R17, R18, R23, R24,  
R25, R26, R27, R28,  
R29, R30, R35, R36,  
R40, R44, R45, R46  
J4  
J7  
J11, J12  
J5, J10  
S01–S04  
50 Ω  
SM 0805 Resistor  
ERJ-6GEYJ510V (Panasonic)  
1
1
2
2
4
4
SMA  
SMA  
SMA  
SMA  
Stand-Off  
Screws  
AINA2  
AINB2  
ENCODE  
ENCODE  
Stand-Off  
Screws (Stand-Off)  
142-0701-201 (Johnson Comp.)  
142-0701-201 (Johnson Comp.)  
142-0701-201 (Johnson Comp.)  
142-0701-201 (Johnson Comp.)  
313-2477-016 (Johnson Comp.)  
MPMS 0040005PH (Building  
Fasteners)  
1
PCB  
AD10200 Eval Board  
GS03363 Rev. A  
–14–  
REV. B  
AD10200  
Figure 10a. Bottom View  
C 1 4  
C 4  
C 3 0  
R 7 2  
R 6 1  
U 1 0  
C 2 3  
R 3 9  
R 6 6  
R 6 0  
C 2 2  
R 5 0  
R 4 9  
R 4  
R 8  
U 1 1  
C 1 7  
C 2 7  
R 3 8  
U 9  
R 6 4  
U 1 7  
R 6 3  
R 5 3  
R 6 5  
C 2 5  
U 1 5  
C 3 5  
C 2 8  
C 2 4  
C 2 1  
C 3 6  
E 4 0  
C 1 8  
G N D T I E  
G N D T I E  
G N D T I E  
G N D T I E  
U 1 6  
C 3 3  
C 3 7  
G N D T I E  
E 4 8  
C 1 0  
C 2 0  
C 1 5  
C 7  
C 3 4  
C 8  
R 4 2  
R 4 3  
U 3  
U 1 4  
C 9  
R 4  
R 3  
R 7  
U 4  
U 2  
R 5 6  
C 1 3  
C 1  
R 1  
C 6  
C 2  
R 5 8  
R 4 1  
R 7 1  
C 2 9  
C 3  
Figure 10b. Bottom Assembly  
–15–  
REV. B  
AD10200  
Figure 10c. Ground 1  
AGNDB  
DGNDB  
AGNDA  
DGNDA  
Figure 10d. Ground 2  
–16–  
REV. B  
AD10200  
C 1 4  
C 4  
C 3 0  
R 7 2  
R 6 1  
C 2 3  
U 1 0  
R 3 9  
U 9  
R 6 6  
R 6 0  
C 2 2  
R 5 0  
R 8  
R 4 9  
R 5 4  
R 5 3  
U 1 1  
C 1 7  
C 2 7  
R 3 8  
U 1 7  
R 6 3  
R 6 5  
C 2 5  
R 6 4  
C 2 8  
U 1 5  
C 3 5  
C 2 4  
C 2 1  
C 3 6  
E 4 0  
C 1 8  
G N D T I E  
G N D T I E  
G N D T I E  
G N D T I E  
U 1 6  
C 3 3  
C 3 7  
G N D T I E  
E 4 8  
C 1 0  
C 2 0  
C 1 5  
C 7  
C 3 4  
C 8  
R 4 2  
R 4 3  
U 3  
U 1 4  
C 9  
R 4  
R 3  
R 7  
U 4  
U 2  
R 5 6  
C 1 3  
C 1  
R 1  
C 6  
C 2  
R 5 8  
R 4 1  
R 7 1  
C 2 9  
C 3  
Figure 10e. Bottom Silk  
Figure 10f. Top View  
–17–  
REV. B  
AD10200  
E5  
E3  
E33  
E26  
J2  
C16  
E37  
E30  
E2  
E38  
E29  
E1  
+5VAB  
3.3VDB  
AGNDB  
DGNDB  
L2  
BJ1  
EXTRA  
L4  
E35  
E80  
E46  
E83  
E36  
E79  
E45  
E84  
E27  
E63  
U6  
C39  
ENCB  
ENCBBAR  
E58  
E62  
E59  
J10  
J11  
E60  
E61  
E55  
R11  
R10  
R30  
R29  
R28  
R27  
R26  
R12  
BUFLATB  
LATCHB  
E22  
E24  
C26  
R9  
R25  
R36  
R35  
R34  
R33  
R32  
R31  
E50  
REF_B  
AINB1  
AINB2  
U1  
J6  
ANALOG  
DEVICES  
COPYRIGHT  
J7  
E11  
E39  
E77  
E12  
2/10 0  
GND TIE  
E47  
GND TIE  
GND TIE  
E78  
E49  
REF_A  
AD10200 EVALUATION BOARD  
E7  
PIN  
1
GS03363 (A)  
BEL  
J3  
E8  
J4  
AINA1  
R18  
R17  
R16  
R40  
R44  
R45  
R46  
R15  
R14  
R13  
R24  
R23  
R22  
R21  
R20  
R19  
J1  
AINA2  
BUFLATA  
E19  
LATCHA  
E57  
E23  
ENCA  
ENCABAR  
C5  
E82 E81  
E65 E66  
E52 E53  
E51  
J5  
J12  
E56  
E54  
E9  
E10  
C38  
E64  
E41 E42  
E43 E44  
E68 E67  
E74 E73  
E71 E72  
E69 E70  
E75 E76  
U5  
L3  
BJ2  
EXTRA  
L1  
E28  
3.3VDA  
+5VAA  
AGNDA  
DGNDA  
C12  
E6  
E34  
E25  
E4  
Figure 10g. Top Assembly  
E5  
E3  
E33  
E26  
J2  
C16  
E37  
E30  
E2  
E38  
E29  
E1  
+5VAB  
3.3VDB  
AGNDB  
DGNDB  
L2  
BJ1  
EXTRA  
L4  
E35  
E80  
E46  
E83  
E36  
E79  
E45  
E84  
E27  
U6  
E63  
C39  
ENCB  
ENCBBAR  
E58  
E62  
E59  
J10  
J11  
E60  
E61  
E55  
R11  
R10  
R30  
R29  
R28  
R27  
R26  
R12  
BUFLATB  
LATCHB  
E22  
E24  
C26  
R9  
R25  
R36  
R35  
R34  
R33  
R32  
R31  
E50  
REF_B  
AINB1  
AINB2  
U1  
J6  
ANALOG  
DEVICES  
COPYRIGHT  
J7  
E11  
E39  
E77  
E12  
2/10 0  
GND TIE  
E47  
GND TIE  
GND TIE  
E78  
E49  
REF_A  
AD10200 EVALUATION BOARD  
E7  
PIN  
1
GS03363 (A)  
BEL  
J3  
E8  
J4  
AINA1  
R18  
R17  
R16  
R40  
R44  
R45  
R46  
R15  
R14  
R13  
R24  
R23  
R22  
R21  
R20  
R19  
J1  
AINA2  
BUFLATA  
E19  
LATCHA  
E57  
E23  
ENCA  
ENCABAR  
C5  
E82 E81  
E65 E66  
E52 E53  
E51  
J5  
J12  
E56  
E54  
E9  
E10  
C38  
E64  
E41 E42  
E43 E44  
E68 E67  
E74 E73  
E71 E72  
E69 E70  
E75 E76  
U5  
L3  
BJ2  
EXTRA  
L1  
E28  
3.3VDA  
+5VAA  
AGNDA  
DGNDA  
C12  
E6  
E34  
E25  
E4  
Figure 10h. Top Silk  
–18–  
REV. B  
AD10200  
Data Sheet  
OUTLINE DIMENSIONS  
0.290 (7.37)  
MAX  
0.960 (24.38)  
0.950 (24.13) SQ  
0.940 (23.88)  
0.010 (0.25)  
0.008 (0.20)  
0.007 (0.18)  
9
61  
10  
60  
PIN 1  
TOP VIEW  
(PINS DOWN)  
1.190 (30.23)  
1.180 (29.97) SQ  
1.170 (29.72)  
1.070  
(27.18)  
MIN  
0.800  
(20.32)  
BSC  
TOE DOWN  
ANGLE  
0–8 DEGREES  
0.010 (0.254)  
26  
44  
30°  
27  
43  
0.050 (1.27)  
0.020 (0.508)  
0.060 (1.52)  
0.050 (1.27)  
0.040 (1.02)  
DETAIL A  
0.055 (1.40)  
0.050 (1.27)  
0.045 (1.14)  
0.020 (0.508)  
0.017 (0.432)  
0.014 (0.356)  
DETAIL A  
0.230 (5.84)  
MAX  
ROTATED 90° CCW  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 8. 68-Lead Ceramic Leaded Chip Carrier [CLCC]  
(ES-68-3)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD10200BZ  
5962-9961002HXA  
5962-9961003HXA  
−40°C to +85°C  
−40°C to +85°C  
−50°C to +125°C  
68-Lead Ceramic Leaded Chip Carrier [CLCC]  
68-Lead Ceramic Leaded Chip Carrier [CLCC]  
68-Lead Ceramic Leaded Chip Carrier [CLCC]  
ES-68-3  
ES-68-3  
ES-68-3  
©2001–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01634-0-8/16(B)  
Rev. B | Page 19 of 19  

相关型号:

5962-9961201HNA

Positive Adjustable Voltage Regulator
ETC

5962-9961201HNC

Positive Adjustable Voltage Regulator
ETC

5962-9961201HTA

Positive Adjustable Voltage Regulator
ETC

5962-9961201HTC

Positive Adjustable Voltage Regulator
ETC

5962-9961201HUA

Positive Adjustable Voltage Regulator
ETC

5962-9961201HUC

Positive Adjustable Voltage Regulator
ETC

5962-9961201HZA

Positive Adjustable Voltage Regulator
ETC

5962-9961201HZC

Positive Adjustable Voltage Regulator
ETC

5962-9961202HNA

Positive Adjustable Voltage Regulator
ETC

5962-9961202HNC

Positive Adjustable Voltage Regulator
ETC

5962-9961202HTA

Positive Adjustable Voltage Regulator
ETC

5962-9961202HTC

Positive Adjustable Voltage Regulator
ETC