5962-9452101M2A [ADI]

Precision Picoampere Input Current Quad Operational Amplifier; 精密Picoampere输入电流四路运算放大器
5962-9452101M2A
型号: 5962-9452101M2A
厂家: ADI    ADI
描述:

Precision Picoampere Input Current Quad Operational Amplifier
精密Picoampere输入电流四路运算放大器

运算放大器 放大器电路
文件: 总16页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Picoampere Input Current  
Quad Operational Amplifier  
OP497  
FEATURES  
PIN CONNECTIONS  
1
Low offset voltage: 75 μV maximum  
Low offset voltage drift: 1.0 μV/°C maximum  
Very low bias current  
25°C: 150 pA maximum  
−40°C to +85°C: 300 pA maximum  
Very high open-loop gain: 2000 V/mV minimum  
Low supply current (per amplifier): 625 μA maximum  
Operates from 2 V to 20 V supplies  
High common-mode rejection: 114 dB minimum  
16  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
OP497  
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
NC = NO CONNECT  
Figure 1. 16-Lead Wide Body SOIC (RW-16)  
APPLICATIONS  
1
2
3
4
5
6
7
OUT A  
–IN A  
+IN A  
V+  
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
V–  
Strain gage and bridge amplifiers  
High stability thermocouple amplifiers  
Instrumentation amplifiers  
Photocurrent monitors  
High gain linearity amplifiers  
Long-term integrators/filters  
Sample-and-hold amplifiers  
Peak detectors  
OP497  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
Figure 2. 14-Lead PDIP (N-14)  
1k  
Logarithmic amplifiers  
V
V
= ±15V  
S
= 0V  
CM  
Battery-powered systems  
GENERAL DESCRIPTION  
The OP497 is a quad op amp with precision performance in  
the space-saving, industry standard 16-lead SOlC package.  
Its combination of exceptional precision with low power and  
extremely low input bias current makes the quad OP497 useful  
in a wide variety of applications.  
100  
–I  
B
+I  
B
Precision performance of the OP497 includes very low offset  
(<50 μV) and low drift (<0.5 μV/°C). Open-loop gain exceeds  
2000 V/mV ensuring high linearity in every application. Errors  
due to common-mode signals are eliminated by its common-  
mode rejection of >120 dB. The OP497 has a power supply  
rejection of >120 dB which minimizes offset voltage changes  
experienced in battery-powered systems. The supply current  
of the OP497 is <625 μA per amplifier, and it can operate with  
supply voltages as low as 2 V.  
I
OS  
10  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 3. Input Bias, Offset Current vs. Temperature  
Combining precision, low power, and low bias current, the OP497  
is ideal for a number of applications, including instrumentation  
amplifiers, log amplifiers, photodiode preamplifiers, and long-  
term integrators. For a single device, see the OP97 data sheet,  
and for a dual device, see the OP297 data sheet.  
The OP497 uses a superbeta input stage with bias current  
cancellation to maintain picoamp bias currents at all temperatures.  
This is in contrast to FET input op amps whose bias currents  
start in the picoamp range at 25°C but double for every 10°C  
rise in temperature to reach the nanoamp range above 85°C.  
The input bias current of the OP497 is <100 pA at 25°C.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1991–2009 Analog Devices, Inc. All rights reserved.  
 
OP497  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AC Performance ......................................................................... 10  
Guarding And Shielding ........................................................... 11  
Open-Loop Gain Linearity ....................................................... 11  
Applications Circuit ....................................................................... 12  
Precision Absolute Value Amplifier......................................... 12  
Precision Current Pump............................................................ 12  
Precision Positive Peak Detector.............................................. 12  
Simple Bridge Conditioning Amplifier................................... 12  
Nonlinear Circuits...................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Connections ............................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Typical Performance Characteristics ............................................. 5  
Applications Information .............................................................. 10  
REVISION HISTORY  
2/09—Rev. D to Rev. E  
11/01—Rev. C to Rev. D  
Deleted 14-Lead CERDIP............................................. Throughout  
Changes to Features Section and General Description  
Edits to Pin Connection Headings..................................................1  
Deleted Wafer Test Limits ................................................................3  
Edits to Absolute Maximum Ratings..............................................5  
Edits to Outline Dimensions......................................................... 16  
Edits to Ordering Guide ................................................................ 17  
Section................................................................................................ 1  
Delete Military Processed Devices Text, SMD Part Number,  
ADI Part Number Table, and Dice Characteristics Figure ......... 3  
Changes to Table 1............................................................................ 3  
Changes to Absolute Maximum Ratings Section......................... 4  
Changes to Figure 12........................................................................ 6  
Changes to Figure 18 and Figure 19............................................... 7  
Changes to Figure 26 and Figure 28............................................... 8  
Deleted OP497 Spice Macro-Model Section............................... 10  
Changes to Applications Information Section............................ 10  
Moved Figure 33 ............................................................................. 10  
Deleted Table I. OP497 SPICE Net-List....................................... 11  
Changes to Open-Loop Gain Linearity Section and  
Figure 35 .......................................................................................... 11  
Changes to Figure 40...................................................................... 13  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 15  
Rev. E | Page 2 of 16  
 
OP497  
SPECIFICATIONS  
TA = 25°C, VS = 15 V, unless otherwise noted.  
Table 1.  
F Grade  
Typ  
G Grade  
Typ Max Unit  
Parameter  
Symbol Condition  
VOS  
Min  
Max Min  
INPUT CHARACTERISTICS  
Offset Voltage  
40  
70  
0.4  
0.1  
75  
150  
1.0  
80  
150  
250  
1.5  
μV  
−40°C ≤ +85°C  
TMIN − TMAX  
120  
0.6  
0.1  
μV  
μV/°C  
μV/Month  
Average Input Offset Voltage Drift TCVOS  
Long-Term Input Offset Voltage  
Stability  
Input Bias Current  
IB  
VCM = 0 V  
40  
60  
0.3  
30  
50  
150  
200  
60  
80  
0.3  
50  
80  
200  
300  
pA  
pA  
pA/°C  
pA  
pA  
−40° ≤ TA ≤ +85°C  
−40° ≤ TA ≤ +85°C  
VCM = 0 V  
Average Input Bias Current Drift  
Input Offset Current  
TCIB  
IOS  
150  
200  
200  
300  
−40° ≤ TA ≤ +85°C  
Average Input Offset Current Drift TCIOS  
0.3  
14  
13.5  
135  
120  
0.4  
14  
13.5  
135  
120  
pA/°C  
V
V
dB  
dB  
V/mV  
V/mV  
MΩ  
GΩ  
pF  
Input Voltage Range1  
IVR  
13  
13  
114  
108  
13  
13  
114  
108  
TMIN − TMAX  
VCM = 13 V  
TMIN − TMAX  
VO = 10 V, RL = 2 kΩ  
−40° ≤ TA ≤ +85°C  
Common-Mode Rejection  
Large Signal Voltage Gain  
CMR  
AVO  
1500 4000  
1200 4000  
800  
2000  
30  
500  
3
800  
2000  
30  
500  
3
Input Resistance Differential Mode  
Input Resistance Common Mode  
Input Capacitance  
RIN  
RINCM  
CIN  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
RL = 2 kΩ  
RL = 10 kΩ, TMIN − TMAX  
RL = 10 kΩ  
13  
13  
13  
13.7  
14  
13.5  
25  
13  
13  
13  
13.7  
14  
13.5  
25  
V
V
V
mA  
Short Circuit  
ISC  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2 V to 20 V  
VS = 2.5 V to 20 V, TMIN − TMAX 108  
No load  
TMIN − TMAX  
Operating range  
TMIN − TMAX  
114  
135  
120  
525  
580  
114  
108  
135  
120  
525  
750  
dB  
dB  
μA  
μA  
V
Supply Current (per Amplifier)  
Supply Voltage Range  
625  
750  
20  
625  
580  
2
2.5  
VS  
2
2.5  
20  
20  
20  
V
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
SR  
GBW  
CS  
0.05  
0.15  
500  
150  
0.05  
0.15  
500  
150  
V/μs  
kHz  
dB  
VO = 20 V p-p, fO = 10 Hz  
en p-p  
en  
0.1 Hz to 10 Hz  
en = 10 Hz  
en = 1 kHz  
0.3  
17  
15  
20  
0.3  
17  
15  
20  
μV/p-p  
nV/√Hz  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
in  
in = 10 Hz  
1 Guaranteed by CMR test.  
Rev. E | Page 3 of 16  
 
OP497  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Absolute maximum ratings apply to packaged parts.  
θJA is specified for the worst-case mounting conditions, that is,  
θJA is specified for a device in socket for the PDIP package, and  
Table 2.  
Parameter  
Supply Voltage  
Input Voltage1  
Rating  
θ
JA is specified for a device soldered to the printed circuit board  
(PCB) for the SOIC package.  
20 V  
20 V  
Differential Input Voltage1  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
40 V  
Table 3.  
Package Type  
θJA  
76  
92  
θJC  
33  
23  
Unit  
°C/W  
°C/W  
Indefinite  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
14-Lead PDIP (N-14)  
16-Lead SOIC (RW-16)  
1 For supply voltages less than 20 V, the absolute maximum input voltage is  
equal to the supply voltage.  
1/4  
V
20V p-p @ 10Hz  
1
OP497  
+
2k  
50kΩ  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
50Ω  
1/4  
V
2
OP497  
+
V
1
CHANNEL SEPARATION = 20 log  
(
)
V /10,000  
2
Figure 4. Channel Separation Test Circuit  
ESD CAUTION  
Rev. E | Page 4 of 16  
 
OP497  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 15 V, unless otherwise noted.  
50  
40  
30  
20  
10  
0
50  
V
V
= ±15V  
T
V
V
= 25°C  
= ±15V  
S
A
= 0V  
CM  
S
= 0V  
CM  
40  
30  
20  
10  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
TCV (µV/°C)  
INPUT OFFSET VOLTAGE (µV)  
OS  
Figure 5. Typical Distribution of Input Offset Voltage  
Figure 8. Typical Distribution of TCVOS  
1k  
100  
10  
50  
40  
30  
20  
10  
V
V
= ±15V  
= 0V  
T
V
V
= 25°C  
= ±15V  
S
A
CM  
S
= 0V  
CM  
–I  
B
+I  
B
I
OS  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
INPUT BIAS CURRENT (pA)  
Figure 6. Typical Distribution of Input Bias Current  
Figure 9. Input Bias, Offset Current vs. Temperature  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
T
V
= 25°C  
= ±15V  
T
V
V
= 25°C  
= ±15V  
A
A
S
S
= 0V  
CM  
–I  
+I  
B
B
0
10  
20  
30  
40  
50  
60  
–15  
–10  
–5  
0
5
10  
15  
INPUT OFFSET CURRENT (pA)  
COMMON-MODE VOLTAGE (V)  
Figure 7. Typical Distribution of Input Offset Current  
Figure 10. Input Bias Current vs. Common-Mode Voltage  
Rev. E | Page 5 of 16  
 
OP497  
±3  
1k  
100  
10  
T
V
= 25°C  
= ±2V TO ±20V  
T
V
V
= 25°C  
= ±15V  
A
A
S
S
= 0V  
CM  
±2  
±1  
0
CURRENT NOISE  
VOLTAGE NOISE  
1
0
1
2
3
4
5
1
10  
100  
FREQUENCY (Hz)  
1k  
TIME AFTER POWER APPLIED (Minutes)  
Figure 11. Input Offset Voltage Warm-Up Drift  
Figure 14. Voltage Noise Density vs. Frequency  
10k  
1k  
10  
T
V
= 25°C  
= ±2V TO ±20V  
BALANCED OR UNBALANCED  
A
V
V
= ±15V  
S
S
= 0V  
CM  
1
10Hz  
1kHz  
T
= 25°C  
100  
A
0.1  
0.01  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
SOURCE RESISTANCE ()  
SOURCE RESISTANCE ()  
Figure 12. Effective Offset Voltage vs. Source Resistance  
Figure 15. Total Noise Density vs. Source Resistance  
100  
10  
1
BALANCED OR UNBALANCED  
5mV  
1s  
V
V
= ±15V  
S
= 0V  
CM  
100  
90  
10  
0%  
V
T
= ±15V  
S
= 25°C  
A
0.1  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
2
4
6
8
10  
SOURCE RESISTANCE ()  
TIME (Seconds)  
Figure 13. Effective TCVOS vs. Source Resistance  
Figure 16. 0.1 Hz to 10 Hz Noise Voltage  
Rev. E | Page 6 of 16  
OP497  
160  
140  
120  
100  
80  
100  
80  
V
T
= ±15V  
= 25°C  
V
C
R
= ±15V  
= 30pF  
= 1M  
= 25°C  
S
S
A
L
L
T
A
GAIN  
60  
PHASE  
40  
90  
20  
135  
180  
225  
60  
0
40  
–20  
20  
0
–40  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
Figure 20. Common-Mode Rejection vs. Frequency  
10k  
160  
140  
120  
100  
80  
V
T
= ±15V  
= 25°C  
S
A
T
= 25°C  
A
–PSR  
T
= 125°C  
A
+PSR  
1k  
60  
40  
20  
V
V
= ±15V  
= ±10V  
S
O
100  
0
1
10  
20  
1
10  
100  
1k  
10k  
100k  
1M  
LOAD RESISTANCE (k)  
FREQUENCY (Hz)  
Figure 18. Open-Loop Gain vs. Load Resistance  
Figure 21. Power Supply Rejection vs. Frequency  
35  
30  
25  
20  
15  
10  
5
R
= 2k  
= ±15V  
= ±10V  
V
T
A
= ±15V  
= 25°C  
= +1  
L
S
S
A
V
V
CN  
VCL  
1% THD  
R
T
= 125°C  
= 25°C  
= 10kΩ  
A
L
T
A
0
100  
–15  
–10  
–5  
0
5
10  
15  
1k  
10k  
FREQUENCY (Hz)  
100k  
OUTPUT VOLTAGE (V)  
Figure 19. Open-Loop Gain Linearity  
Figure 22. Maximum Output Swing vs. Frequency  
Rev. E | Page 7 of 16  
OP497  
+V  
700  
600  
500  
400  
300  
200  
S
T
= 25°C  
NO LOAD  
A
–0.5  
–1.0  
–1.5  
125°C  
25°C  
1.5  
1.0  
0.5  
–V  
S
0
±5  
±10  
±15  
±20  
0
±5  
±10  
±15  
±20  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 23. Input Common-Mode Voltage Range vs. Supply Voltage  
Figure 26. Supply Current (per Amplifier) vs. Supply Voltage  
35  
1k  
V
T
= ±15V  
= 25°C  
V
T
A
= ±15V  
= 25°C  
= +1  
S
S
A
A
30  
25  
20  
15  
10  
5
VCL  
100  
10  
1% THD  
fO = 1kHz  
1
A
= +1  
V
0.1  
0.01  
0.001  
0
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
Figure 27. Closed-Loop Output Impedance vs. Frequency  
Figure 24. Maximum Output Swing vs. Load Resistance  
35  
+V  
S
T
R
= 25°C  
= 10kΩ  
A
30  
25  
20  
15  
–0.5  
L
T
= 25°C  
A
–1.0  
–1.5  
T
= 125°C  
A
V
= ±15V  
S
OUTPUT SHORTED  
TO GROUND  
–15  
–20  
–25  
–30  
–35  
1.5  
1.0  
0.5  
T
= 125°C  
= 25°C  
A
T
A
–V  
S
0
1
2
3
4
0
±5  
±10  
±15  
±20  
TIME FROM OUTPUT SHORT (Minutes)  
SUPPLY VOLTAGE (V)  
Figure 28. Short-Circuit Current vs. Time at Various Temperatures  
Figure 25. Output Voltage Swing vs. Supply Voltage  
Rev. E | Page 8 of 16  
OP497  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
= 25°C  
= +1  
S
T
A
A
V
VCL  
= 100mV p-p  
OUT  
10  
100  
1k  
10k  
LOAD CAPACITANCE (pF)  
Figure 29. Small-Signal Overshoot vs. Load Capacitance  
Rev. E | Page 9 of 16  
OP497  
APPLICATIONS INFORMATION  
Extremely low bias current makes the OP497 attractive for use  
in sample-and-hold amplifiers, peak detectors, and log amplifiers  
that must operate over a wide temperature range. Balancing  
input resistances is not necessary with the OP497. High source  
resistance, even when unbalanced, only minimally degrades the  
offset voltage and TCVOS.  
100  
90  
The input pins of the OP497 are protected against large differential  
voltage by back-to-back diodes and current-limiting resistors.  
Common-mode voltages at the inputs are not restricted and  
may vary over the full range of the supply voltages used.  
10  
0%  
20mV  
5µs  
The OP497 requires very little operating headroom about the  
supply rails and is specified for operation with supplies as low as  
2 V. Typically, the common-mode range extends to within 1 V  
of either rail. When using a 10 kΩ load, the output typically  
swings to within 1 V of the rails.  
Figure 31. Small Signal Transient Response (CLOAD = 1000 pF, AVCL = +1)  
100  
90  
AC PERFORMANCE  
The ac characteristics of the OP497 are highly stable over its full  
operating temperature range. Figure 30 shows the unity-gain  
small signal response. Extremely tolerant of capacitive loading  
on the output, the OP497 displays excellent response even with  
1000 pF loads (see Figure 31).  
10  
0%  
2V  
50µs  
100  
90  
Figure 32. Large Signal Transient Response (AVCL = +1)  
10  
0%  
20mV  
5µs  
Figure 30. Small Signal Transient Response (CLOAD = 100 pF, AVCL = +1)  
V+  
V
OUT  
2.5k  
–IN  
2.5kΩ  
+IN  
V–  
Figure 33. Simplified Schematic Showing One Amplifier  
Rev. E | Page 10 of 16  
 
 
 
OP497  
GUARDING AND SHIELDING  
OPEN-LOOP GAIN LINEARITY  
To maintain the extremely high input impedances of the OP497,  
care must be taken in circuit board layout and manufacturing.  
Board surfaces must be kept scrupulously clean and free of  
moisture. Conformal coating is recommended to provide a  
humidity barrier. Even a clean PCB can have 100 pA of leakage  
currents between adjacent traces; therefore, use guard rings  
around the inputs. Guard traces are operated at a voltage close  
to that on the inputs, as shown in Figure 34, so that leakage  
currents become minimal. In noninverting applications, connect  
the guard ring to the common-mode voltage at the inverting  
input. In inverting applications, both inputs remain at ground;  
therefore, the guard trace should be grounded. Place guard  
traces on both sides of the circuit board.  
The OP497 has both an extremely high gain of 2000 V/mV  
typical and constant gain linearity. This enhances the precision  
of the OP497 and provides for very high accuracy in high  
closed-loop gain applications. Figure 35 illustrates the typical  
open-loop gain linearity of the OP497.  
R
V
= 10kΩ  
= ±15V  
L
S
V
= 0V  
CM  
T
T
= 125°C  
= 25°C  
A
A
UNITY-GAIN FOLLOWER  
NONINVERTING AMPLIFIER  
1/4  
OP497  
+
1/4  
OP497  
+
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
Figure 35. Open-Loop Gain Linearity  
INVERTING AMPLIFIER  
PDIP  
BOTTOM VIEW  
1
8
1/4  
A
OP497  
+
B
Figure 34. Guard Ring Layout and Connections  
Rev. E | Page 11 of 16  
 
 
 
OP497  
APPLICATIONS CIRCUIT  
PRECISION ABSOLUTE VALUE AMPLIFIER  
PRECISION POSITIVE PEAK DETECTOR  
In Figure 38, the CH must be of polystyrene, Teflon®, or  
polyethylene to minimize dielectric absorption and leakage.  
The droop rate is determined by the size of CH and the bias  
current of the OP497.  
The circuit in Figure 36 is a precision absolute value amplifier  
with an input impedance of 30 Mꢀ. The high gain and low  
TCVOS of the OP497 ensure accurate operation with microvolt  
input signals. In this circuit, the input always appears as a common-  
mode signal to the op amps. The CMR of the OP497 exceeds  
120 dB, yielding an error of less than 2 ppm.  
1kΩ  
+15V  
0.1µF  
1N4148  
+15V  
2
6
8
1/4  
OP497  
1
2N930  
+
1/4  
OP497  
7
1kΩ  
V
C2  
0.1µF  
R1  
1kΩ  
R3  
1kΩ  
OUT  
3
1kΩ  
V
5
IN  
4
0.1µF  
C
H
C1  
30pF  
D1  
1N4148  
6
5
1/4  
OP497  
7
2
3
8
1kΩ  
–15V  
1/4  
OP497  
1
0V < V  
< 10V  
RESET  
OUT  
D2  
1N4148  
C3  
0.1µF  
R2  
2kΩ  
V
IN  
4
Figure 38. Precision Positive Peak Detector  
SIMPLE BRIDGE CONDITIONING AMPLIFIER  
–15V  
Figure 39 shows a simple bridge conditioning amplifier using  
the OP497. The transfer function is  
Figure 36. Precision Absolute Value Amplifier  
PRECISION CURRENT PUMP  
ΔR  
R + ΔR  
RF  
R
Maximum output current of the precision current pump shown  
in Figure 37 is 10 mA. Voltage compliance is 10 V with 15 V  
supplies. Output impedance of the current transmitter exceeds  
3 Mꢀ with linearity better than 16 bits.  
VOUT = VREF  
The REF43 provides an accurate and stable reference voltage for  
the bridge. To maintain the highest circuit accuracy, RF should  
be 0.1% or better with a low temperature coefficient.  
R3  
10kΩ  
+5V  
R1  
10kΩ  
2
R5  
10kΩ  
2
1/4  
OP497  
I
1
V
OUT  
±10mA  
REF  
R2  
10kΩ  
2.5V  
R
V
6
R
IN  
F
REF43  
4
3
R
+
+15V  
2
3
8
5
6
R4  
10kΩ  
1/4  
OP497  
1
V
OUT  
7
1/4  
OP497  
R + ΔR  
R
V
V
IN  
IN  
4
I
=
=
= 10mA/V  
+5V  
8
OUT  
R5 100Ω  
R
F
6
5
ΔR  
R + ΔR  
V
= V  
OUT  
REF  
(
)
–15V  
R
1/4  
OP497  
7
Figure 37. Precision Current Pump  
4
–5V  
Figure 39. Simple Bridge Conditioning Amplifier Using the OP497  
Rev. E | Page 12 of 16  
 
 
 
 
 
OP497  
A similar analysis made for the square root amplifier circuit in  
Figure 41 leads to its transfer function  
NONLINEAR CIRCUITS  
Due to its low input bias currents, the OP497 is an ideal log  
amplifier in nonlinear circuits, such as the squaring amplifier  
and square root amplifier circuits shown in Figure 40 and  
Figure 41. Using the squaring amplifier circuit in Figure 40  
as an example, the analysis begins by writing a voltage loop  
equation across Transistors Q1, Q2, Q3, and Q4.  
(
VIN
)(
IREF  
)
VOUT = R2  
R1  
In these circuits, IREF is a function of the negative power supply. To  
maintain accuracy, the negative supply should be well regulated.  
For applications where very high accuracy is required, a voltage  
reference can be used to set IREF. An important consideration for  
the squaring circuit is that a sufficiently large input voltage can  
force the output beyond the operating range of the output op  
amp. Resistor R4 can be changed to scale IREF, or R1 and R2 can  
be varied to keep the output voltage within the usable range.  
IIN  
IS1  
IIN  
IS2  
IO  
IS3  
IREF  
IS4  
+V In  
V In  
+V In  
=V In I  
T1  
T2  
T3  
T4  
All the transistors in the MAT04 are precisely matched and at  
the same temperature; therefore, the IS and VT terms cancel,  
giving  
R2  
33kΩ  
2InIIN = InIO + InIREF = In (IO × IREF  
)
Exponentiating both sides of the thick equation lead to  
C2  
100pF  
6
5
2
(
IIN  
IREF  
)
1/4  
OP497  
7
V
OUT  
I
IO =  
O
1
Op amp A2 forms a current-to-voltage converter which results  
in VOUT = R2 × IO. Substituting (VIN/R1) for IIN and the previous  
equation for IO yields  
Q1  
2
MAT04  
I
REF  
I
IN  
3
7
C1  
14  
Q4  
12  
100pF  
13  
8
2
V
R1  
R2  
IREF  
V+  
6
9
IN  
Q2  
Q3  
VOUT  
=
R1  
33kΩ  
5
10  
8
2
V
IN  
1/4  
1
OP497  
3
R5  
2kΩ  
R3  
50kΩ  
R4  
50kΩ  
4
C2  
100pF  
V–  
–15V  
Figure 41. Square Root Amplifier  
R2  
33kΩ  
A2  
6
Unadjusted accuracy of the square root circuit is better than  
0.1% over an input voltage range of 100 mV to 10 V. For a similar  
input voltage range, the accuracy of the squaring circuit is better  
than 0.5%.  
1/4  
OP497  
7
V
OUT  
I
O
5
1
2
Q1  
3
7
6
Q2  
5
14  
MAT04  
13  
8
I
Q4  
REF  
9
Q3  
10  
V+  
8
1/4  
OP497  
12  
C1  
R1  
133kΩ  
A1  
100pF  
I
IN  
2
3
V
IN  
1
R3  
50kΩ  
R4  
50kΩ  
4
–15V  
V–  
Figure 40. Squaring Amplifier  
Rev. E | Page 13 of 16  
 
 
 
OP497  
OUTLINE DIMENSIONS  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 42. 14-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-14)  
Dimensions shown in inches and (millimeters)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 43. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 14 of 16  
 
OP497  
ORDERING GUIDE  
Model  
OP497FP  
OP497FPZ1  
OP497GP  
OP497GPZ1  
OP497FS  
OP497FS-REEL  
OP497FSZ1  
OP497FSZ-REEL  
OP497GS  
OP497GS-REEL  
OP497GSZ1  
OP497GSZ-REEL1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
14-Lead Plastic Dual In-Line Package [PDIP]  
14-Lead Plastic Dual In-Line Package [PDIP]  
14-Lead Plastic Dual In-Line Package [PDIP]  
14-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
N-14  
N-14  
N-14  
N-14  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
1 Z = RoHS Compliant Part.  
Rev. E | Page 15 of 16  
 
 
OP497  
NOTES  
©1991–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00309-0-2/09(E)  
Rev. E | Page 16 of 16  

相关型号:

5962-9452101M2X

Voltage-Feedback Operational Amplifier
ETC

5962-9452101MCA

IC QUAD OP-AMP, 75 uV OFFSET-MAX, CDIP14, CERDIP-14, Operational Amplifier
ADI

5962-9452101MCX

Voltage-Feedback Operational Amplifier
ETC

5962-9452201MXX

PLL Based Clock Driver, 7B Series, 2 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
CYPRESS

5962-9452301MXA

IC 16-BIT, DSP-MULTIPLIER, CPGA84, CERAMIC,DIP-28, DSP Peripheral
WEDC
ETC

5962-9452401M3X

OT PLD, 35ns, CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

5962-9452401MLX

OT PLD, 35ns, CMOS, CDIP24, CERAMIC, DIP-24
ATMEL

5962-9452402M3A

OT PLD, 25ns, CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

5962-9452402M3X

UV-Erasable/OTP Complex PLD
ETC

5962-9452402MLX

UV-Erasable/OTP Complex PLD
ETC

5962-9452403M3X

UV-Erasable/OTP Complex PLD
ETC