5962-9320901MPA [ADI]

IC DUAL OP-AMP, 2000 uV OFFSET-MAX, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier;
5962-9320901MPA
型号: 5962-9320901MPA
厂家: ADI    ADI
描述:

IC DUAL OP-AMP, 2000 uV OFFSET-MAX, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier

放大器 CD
文件: 总24页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Supply, Rail-to-Rail  
Low Power FET-Input Op Amp  
AD822  
FEATURES  
CONNECTION DIAGRAM  
True single-supply operation  
Output swings rail-to-rail  
Input voltage range extends below ground  
Single-supply capability from 5 V to 30 V  
Dual-supply capability from 2.5 V to 15 V  
High load drive  
Capacitive load drive of 350 pF, G = +1  
Minimum output current of 15 mA  
Excellent ac performance for low power  
800 μA maximum quiescent current per amplifier  
Unity-gain bandwidth: 1.8 MHz  
Slew rate of 3 V/ꢀs  
8
7
6
5
OUT1  
–IN1  
+IN1  
1
2
3
4
V+  
OUT2  
–IN2  
V–  
+IN2  
AD822  
Figure 1. 8-Lead PDIP (N Suffix);  
8-Lead MSOP (RM Suffix);  
and 8-Lead SOIC_N (R Suffix)  
GENERAL DESCRIPTION  
The AD822 is a dual precision, low power FET input op amp  
that can operate from a single supply of 5 V to 30 V or dual  
supplies of ±2ꢀ5 V to ±±5 VIt has true single-supply capability  
with an input voltage range extending below the negative rail,  
allowing the AD822 to accommodate input signals below  
ground in the single-supply modeꢀ Output voltage swing  
extends to within ±0 mV of each rail, providing the maximum  
output dynamic rangeꢀ  
Good dc performance  
800 μV maximum input offset voltage  
2 μV/°C typical offset voltage drift  
25 pA maximum input bias current  
Low noise  
13 nV/√Hz @ 10 kHz  
No phase inversion  
100  
APPLICATIONS  
Battery-powered precision instrumentation  
Photodiode preamps  
Active filters  
12-bit to 14-bit data acquisition systems  
Medical instrumentation  
10  
Low power references and regulators  
1
10  
100  
FREQUENCY (Hz)  
10k  
1k  
Figure 2. Input Voltage Noise vs. Frequency  
Offset voltage of 800 μV maximum, offset voltage drift of 2 μV/°C,  
input bias currents below 25 pA, and low input voltage noise  
provide dc precision with source impedances up to a gigaohmꢀ  
The ±ꢀ8 MHz unity-gain bandwidth, –93 dB THD at ±0 kHz,  
and 3 V/μs slew rate are provided with a low supply current of  
800 μA per amplifierꢀ  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1993–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD822  
TABLE OF CONTENTS  
Features ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
Typical Performance Characteristics ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±±  
Applications Informationꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±8  
Input Characteristicsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±8  
Output Characteristicsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±8  
Single-Supply Voltage-to-Frequency Converter ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±9  
Applicationsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
Connection Diagram ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
General Descriptionꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
Revision History ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 2  
Specificationsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 4  
Absolute Maximum Ratingsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
Thermal Resistance ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
Maximum Power Dissipation ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
ESD Cautionꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
Single-Supply Programmable Gain Instrumentation  
Amplifier ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 20  
Low Dropout Bipolar Bridge Driverꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 20  
Outline Dimensionsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 2±  
Ordering Guide ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 22  
6/06—Rev. F to Rev. G  
REVISION HISTORY  
Changes to Features ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ±  
Changes to Table 4ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
Changes to Table 5ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±2  
Changes to Table 6ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 22  
1/10—Rev. H to Rev. I  
Changes to Features Section and General Description Sectionꢀ ±  
Changes to Endnote ±, Table ±ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 5  
Changes to Endnote ±, Table 2ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 7  
Changes to Endnote ±, Table 3ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 9  
Deleted Table 4; Renumbered Sequentially ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
Changes to Table 5ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±2  
Updated Outline Dimensionsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 2±  
Changes to Ordering Guide ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 22  
Deleted 3 V, Single-Supply Stereo Headphone Driver Sectionꢀ 22  
Deleted Figure 50; Renumbered Sequentially ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 22  
10/05—Rev. E to Rev. F  
Updated FormatꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀUniversal  
Changes to Outline Dimensions ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 24  
Updated Ordering Guide ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 24  
1/03—Data sheet changed from Rev. D to Rev. E  
Edits to Specificationsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ2  
Edits to Figure ±0ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±6  
Updated Outline Dimensionsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±7  
8/08—Rev. G to Rev H.  
Changes to Features Section and General Description Sectionꢀ ±  
Changed VO to VOUT Throughoutꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 4  
Changes to Table ±ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 4  
Changes to Table 2ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 6  
Changes to Table 3ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 8  
Changes to Table 5ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±2  
Added Table 6; Renumbered Sequentially ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±2  
Changes to Figure ±3 Captionꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±4  
Changes to Figure 29, Figure 3±, and Figure 35 ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±7  
Changes to Figure 36ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±8  
Changed Application Notes Section to Applications  
10/02—Data sheet changed from Rev. C to Rev. D  
Edits to Featuresꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ±  
Edits to Ordering Guide ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ6  
Updated SOIC Package Outline ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±7  
8/02—Data sheet changed from Rev. B to Rev. C  
All Figures Updated ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀGlobal  
Edits to Featuresꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ±  
Updated All Package Outlinesꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±7  
7/01—Data sheet changed from Rev. A to Rev. B  
All Figures Updated ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀGlobal  
CERDIP References Removedꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ±, 6, and ±8  
Additions to Product Descriptionꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ±  
8-Lead SOIC and 8-Lead MSOP Diagrams Added ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ±  
Deletion of AD822S Columnꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ2  
Edits to Absolute Maximum Ratings and Ordering Guide ꢀꢀꢀꢀꢀꢀꢀꢀꢀ6  
Removed Metallization Photograph ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ6  
Information Section ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 20  
Changes to Figure 46 and Figure 47ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 2±  
Changes to Figure 49ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 22  
Changes to Figure 5±ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 23  
Rev. I | Page 2 of 24  
 
AD822  
The AD822 drives up to 350 pF of direct capacitive load as a  
follower and provides a minimum output current of ±5 mAꢀ  
This allows the amplifier to handle a wide range of load conditionsꢀ  
Its combination of ac and dc performance, plus the outstanding  
load drive capability, results in an exceptionally versatile amplifier  
for the single-supply userꢀ  
1V  
. . . . . . . .  
20µs  
. . . . . . . . . . . .  
1V  
. . . .  
. . . . . . . . . . . . . . . .  
100  
90  
5V  
.
V
OUT  
The AD822 is available in two performance gradesꢀ The A grade  
and B grade are rated over the industrial temperature range of  
−40°C to +85°Cꢀ  
10  
. . . . . . . .  
. . . .  
. . . . . . . . . . . .  
. . . . . . . . . . . . . . . .  
0%  
0V  
(GND)  
The AD822 is offered in three varieties of 8-lead packages:  
PDIP, MSOP, and SOIC_Nꢀ  
1V  
Figure 3. Gain-of-2 Amplifier; VS = 5 V, 0 V,  
VIN = 2.5 V Sine Centered at 1.25 V, RL = 100 Ω  
Rev. I | Page 3 of 24  
AD822  
SPECIFICATIONS  
VS = 0 V, 5 V @ TA = 25°C, VCM = 0 V, VOUT = 0ꢀ2 V, unless otherwise notedꢀ  
Table 1.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.2  
0.1  
0.5  
2
2
0.5  
2
0.4  
0.9  
mV  
mV  
μV/°C  
pA  
nA  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
At TMAX  
Input Offset Current  
At TMAX  
VCM = 0 V to 4 V  
25  
5
20  
10  
2.5  
10  
0.5  
0.5  
nA  
Open-Loop Gain  
VOUT = 0.2 V to 4 V  
RL = 100 kΩ  
500  
400  
80  
80  
15  
1000  
150  
30  
500  
400  
80  
80  
15  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
10  
10  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ to 2.5 V  
VOUT = 0.25 V to 4.75 V  
−93  
−93  
dB  
DYNAMIC PERFORMANCE  
Unity-Gain Frequency  
Full Power Response  
Slew Rate  
1.8  
210  
3
1.8  
210  
3
MHz  
kHz  
V/μs  
VOUT p-p = 4.5 V  
Settling Time  
To 0.1%  
To 0.01%  
VOUT = 0.2 V to 4.5 V  
VOUT = 0.2 V to 4.5 V  
1.4  
1.8  
1.4  
1.8  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
1.0  
1.6  
0.5  
1.3  
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
3
3
Input Bias Current  
Crosstalk @ f = 1 kHz  
Crosstalk @ f = 100 kHz  
INPUT CHARACTERISTICS  
Input Voltage Range1, TMIN to TMAX  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
20  
10  
RL = 5 kΩ  
RL = 5 kΩ  
−130  
−93  
–130  
–93  
−0.2  
66  
66  
+4  
−0.2  
69  
66  
+4  
V
dB  
dB  
VCM = 0 V to 2 V  
VCM = 0 V to 2 V  
80  
80  
Rev. I | Page 4 of 24  
 
AD822  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Input Impedance  
Conditions  
Min  
Max  
Min  
Max  
Unit  
Differential  
Common Mode  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL – VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
15  
12  
15  
12  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current, TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
350  
1.24  
80  
1.6  
1.24  
80  
1.6  
mA  
dB  
dB  
V+ = 5 V to 15 V  
66  
66  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. I | Page 5 of 24  
AD822  
VS = ±5 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise notedꢀ  
Table 2.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.5  
0.1  
0.5  
2
2
0.5  
2
0.4  
1
mV  
mV  
μV/°C  
pA  
nA  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
At TMAX  
Input Offset Current  
At TMAX  
VCM = −5 V to +4 V  
25  
5
20  
10  
2.5  
10  
0.5  
0.5  
nA  
Open-Loop Gain  
VOUT = −4 V to +4 V  
RL = 100 kΩ  
400  
400  
80  
80  
20  
1000  
150  
30  
400  
400  
80  
80  
20  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
10  
10  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ  
VOUT = 4.5 V  
−93  
−93  
dB  
DYNAMIC PERFORMANCE  
Unity-Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
105  
3
1.9  
105  
3
MHz  
kHz  
V/μs  
VOUT p-p = 9 V  
Settling Time  
to 0.1%  
to 0.01%  
VOUT = 0 V to 4.5 V  
VOUT = 0 V to 4.5 V  
1.4  
1.8  
1.4  
1.8  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
1.0  
3
0.5  
2
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
3
3
Input Bias Current  
Crosstalk @ f = 1 kHz  
Crosstalk @ f = 100 kHz  
INPUT CHARACTERISTICS  
Input Voltage Range1, TMIN to TMAX  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
25  
10  
RL = 5 kΩ  
RL = 5 kΩ  
−130  
−93  
−130  
−93  
−5.2  
66  
66  
+4  
−5.2  
69  
66  
+4  
V
dB  
dB  
VCM = −5 V to +2 V  
VCM = −5 V to +2 V  
80  
80  
Input Impedance  
Differential  
Common Mode  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Rev. I | Page 6 of 24  
 
AD822  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
15  
12  
15  
12  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current, TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
350  
1.3  
80  
1.6  
1.3  
80  
1.6  
mA  
dB  
dB  
VSY = 5 V to 15 V  
66  
66  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. I | Page 7 of 24  
AD822  
VS = ±±5 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise notedꢀ  
Table 3.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.4  
0.5  
2
2
3
0.3  
0.5  
2
1.5  
2.5  
mV  
mV  
μV/°C  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
VCM = 0 V  
2
25  
2
12  
VCM = −10 V  
VCM = 0 V  
40  
0.5  
2
40  
0.5  
2
pA  
nA  
pA  
nA  
At TMAX  
Input Offset Current  
At TMAX  
5
20  
2.5  
12  
0.5  
0.5  
Open-Loop Gain  
VOUT = −10 V to +10 V  
RL = 100 kΩ  
500  
500  
100  
100  
30  
2000  
500  
45  
500  
500  
100  
100  
30  
2000  
500  
45  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
20  
20  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ  
VOUT = 10 V  
−85  
−85  
dB  
DYNAMIC PERFORMANCE  
Unity-Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
45  
3
1.9  
45  
3
MHz  
kHz  
V/μs  
VOUT p-p = 20 V  
Settling Time  
to 0.1%  
to 0.01%  
VOUT = 0 V to 10 V  
VOUT = 0 V to 10 V  
4.1  
4.5  
4.1  
4.5  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
3
4
2
2.5  
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
3
3
Input Bias Current  
Crosstalk @ f = 1 kHz  
Crosstalk @ f = 100 kHz  
INPUT CHARACTERISTICS  
Input Voltage Range1, TMIN to TMAX  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
25  
12  
RL = 5 kΩ  
RL = 5 kΩ  
−130  
−93  
−130  
−93  
−15.2  
70  
70  
+14  
−15.2  
74  
74  
+14  
V
dB  
dB  
VCM = −15 V to +12 V  
VCM = −15 V to +12 V  
80  
90  
Input Impedance  
Differential  
Common Mode  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Rev. I | Page 8 of 24  
AD822  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
20  
15  
20  
15  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current, TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
350  
1.4  
80  
1.8  
1.4  
80  
1.8  
mA  
dB  
dB  
VSY = 5 V to 15 V  
70  
70  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. I | Page 9 of 24  
AD822  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packagesꢀ  
Parameter  
Rating  
Supply Voltage  
18 V  
Internal Power Dissipation  
8-Lead PDIP (N)  
8-Lead SOIC_N (R)  
8-Lead MSOP (RM)  
Input Voltage1  
Table 5. Thermal Resistance  
Package Type  
Observe derating curves  
Observe derating curves  
Observe derating curves  
((V+) + 0.2 V) to  
((V−) − 20 V)  
θJA  
90  
160  
190  
Unit  
°C/W  
°C/W  
°C/W  
8-lead PDIP (N)  
8-lead SOIC_N (R)  
8-lead MSOP (RM)  
Output Short-Circuit Duration  
Differential Input Voltage  
Storage Temperature Range (N)  
Storage Temperature Range (R, RM)  
Operating Temperature Range  
A Grade and B Grade  
Indefinite  
30 V  
–65°C to +125°C  
–65°C to +150°C  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the  
AD822 is limited by the associated rise in junction temperatureꢀ  
For plastic packages, the maximum safe junction temperature is  
±45°Cꢀ If these maximums are exceeded momentarily, proper  
circuit operation is restored as soon as the die temperature is  
reducedꢀ Leaving the device in the overheated condition for an  
extended period can result in device burnoutꢀ To ensure proper  
operation, it is important to observe the derating curves shown  
in Figure 27ꢀ  
–40°C to +85°C  
260°C  
Lead Temperature  
(Soldering, 60 sec)  
1 See the Input Characteristics section.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the deviceꢀ This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not impliedꢀ Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliabilityꢀ  
While the AD822 is internally short-circuit protected, this may  
not be sufficient to guarantee that the maximum junction  
temperature is not exceeded under all conditionsꢀ With power  
supplies ±±2 V (or less) at an ambient temperature of 25°C or  
less, if the output node is shorted to a supply rail, then the  
amplifier is not destroyed, even if this condition persists for an  
extended periodꢀ  
ESD CAUTION  
Rev. I | Page 10 of 24  
 
 
 
 
AD822  
TYPICAL PERFORMANCE CHARACTERISTICS  
70  
5
V
= 0V, 5V  
S
60  
50  
40  
30  
20  
10  
0
V
= 0V, +5V AND ±5V  
S
V
= ±5V  
S
0
–5  
–5  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
COMMON-MODE VOLTAGE (V)  
OFFSET VOLTAGE (mV)  
Figure 4. Typical Distribution of Offset Voltage (390 Units)  
Figure 7. Input Bias Current vs. Common-Mode Voltage; VS = 5 V, 0 V, and  
VS = 5 V  
16  
14  
12  
10  
8
1k  
100  
10  
V
V
= ±5V  
= ±15V  
S
S
6
4
1
2
0
0.1  
–16  
–12 –10 –8  
–6  
–4  
–2  
0
2
4
6
8
10  
–12  
–8  
–4  
0
4
8
12  
16  
OFFSET VOLTAGE DRIFT (µV/°C)  
COMMON-MODE VOLTAGE (V)  
Figure 5. Typical Distribution of Offset Voltage Drift (100 Units)  
Figure 8. Input Bias Current vs. Common-Mode Voltage; VS = 15 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100k  
10k  
1k  
100  
10  
1
0
0.1  
20  
0
1
2
3
4
5
6
7
8
9
10  
40  
60  
80  
100  
120  
140  
INPUT BIAS CURRENT (pA)  
TEMPERATURE (°C)  
Figure 6. Typical Distribution of Input Bias Current (213 Units)  
Figure 9. Input Bias Current vs. Temperature; VS = 5 V, VCM = 0 V  
Rev. I | Page 11 of 24  
 
 
AD822  
10M  
40  
20  
POS RAIL  
NEG RAIL  
R = 2k  
L
R
= 20kΩ  
L
V
= ±15V  
S
1M  
V
= 0V, +5V  
S
POS RAIL  
0
POS  
RAIL  
V
= 0V, +3V  
100k  
S
–20  
–40  
NEG RAIL  
NEG RAIL  
R
= 100kΩ  
L
10k  
100  
1k  
10k  
100k  
0
60  
120  
180  
240  
300  
LOAD RESISTANCE ()  
OUTPUT VOLTAGE FROM SUPPLY RAILS (mV)  
Figure 13. Input Error Voltage with Output Voltage Within 300 mV of Either  
Supply Rail for Various Resistive Loads; VS = 5 V  
Figure 10. Open-Loop Gain vs. Load Resistance  
1k  
100  
10  
10M  
1M  
R
= 100k  
L
V
= ±15V  
S
V
= 0V, +5V  
S
V
= ±15V  
R
= 10kΩ  
S
L
V
= 0V, +5V  
S
100k  
10k  
V
= ±15V  
S
R
= 600Ω  
L
V
= 0V, +5V  
S
1
1
10  
100  
1k  
10k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 11. Open-Loop Gain vs. Temperature  
Figure 14. Input Voltage Noise vs. Frequency  
300  
200  
100  
–40  
–50  
R
A
= 10k  
L
= –1  
CL  
–60  
R
= 10k  
L
R
= 100kΩ  
V
= 0V, +3V; V = 2.5V p-p  
OUT  
L
S
–70  
0
–100  
–200  
–80  
V
= ±15V; V = 20V p-p  
OUT  
S
–90  
V
= ±5V; V = 9V p-p  
OUT  
S
R
= 600Ω  
L
–100  
–110  
V
= 0V, +5V; V = 4.5V p-p  
OUT  
S
–300  
–16  
–12  
–8  
–4  
0
4
8
12  
16  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
OUTPUT VOLTAGE (V)  
Figure 12. Input Error Voltage vs. Output Voltage for Resistive Loads  
Figure 15. Total Harmonic Distortion (THD) vs. Frequency  
Rev. I | Page 12 of 24  
 
 
 
AD822  
100  
80  
60  
40  
20  
0
100  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
S
PHASE  
60  
V
= 0V, +5V  
S
GAIN  
V
= 0V, +3V  
S
40  
20  
0
R
C
= 2kΩ  
= 100pF  
L
L
–20  
10M  
–20  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Open-Loop Gain and Phase Margin vs. Frequency  
Figure 19. Common-Mode Rejection vs. Frequency  
1k  
5
A
= +1  
CL  
= ±15V  
V
S
NEGATIVE  
RAIL  
POSITIVE  
RAIL  
100  
10  
4
3
2
1
0
+25°C  
–55°C  
1
+125°C  
0.1  
0.01  
–55°C  
+125°C  
100  
1k  
10k  
100k  
1M  
10M  
–1  
0
1
2
3
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE FROM SUPPLY RAILS (V)  
Figure 20. Absolute Common-Mode Error vs. Common-Mode Voltage from  
Figure 17. Output Impedance vs. Frequency  
Supply Rails (VS − VCM  
)
1000  
100  
10  
16  
12  
8
1%  
4
V
– V  
OH  
S
0.01%  
ERROR  
0.1%  
0
0.01%  
–4  
–8  
V
– V  
OL S  
1%  
–12  
–16  
0
0.001  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
LOAD CURRENT (mA)  
SETTLING TIME (µs)  
Figure 18. Output Swing and Error vs. Settling Time  
Figure 21. Output Saturation Voltage vs. Load Current  
Rev. I | Page 13 of 24  
 
AD822  
1000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
= 10mA  
SOURCE  
= 10mA  
SINK  
+PSRR  
100  
10  
1
I
= 1mA  
= 10µA  
SOURCE  
I
I
I
= 1mA  
SINK  
–PSRR  
SOURCE  
= 10µA  
SINK  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
80  
60  
TEMPERATURE (°C)  
–60 –40 –20  
0
20  
40  
80  
100 120 140  
FREQUENCY (Hz)  
Figure 22. Output Saturation Voltage vs. Temperature  
Figure 25. Power Supply Rejection vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
V
= ±15V  
R
= 2kΩ  
S
L
V
= ±15V  
S
–OUT  
+
V
= ±15V  
S
V
= 0V, +5V  
S
V
= 0V, +3V  
S
V
= 0V, +5V  
= 0V, +3V  
+
+
S
V
= 0V, +5V  
S
0
V
= 0V, +3V  
S
V
S
0
10k  
100k  
FREQUENCY (Hz)  
1M  
–60 –40 –20  
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 23. Short-Circuit Current Limit vs. Temperature  
Figure 26. Large Signal Frequency Response  
2.4  
2.2  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
T = +125°C  
T = +25°C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8-LEAD PDIP  
8-LEAD SOIC  
T = –55°C  
8-LEAD MSOP  
0
4
8
12  
16  
20  
24  
28  
32  
36  
–60  
–40  
–20  
0
20  
40  
60  
TOTAL SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
Figure 24. Quiescent Current vs. Supply Voltage vs. Temperature  
Figure 27. Maximum Power Dissipation vs. Temperature for Packages  
Rev. I | Page 14 of 24  
 
AD822  
–70  
–80  
5V  
5µs  
100  
90  
–90  
–100  
–110  
–120  
10  
0%  
–130  
–140  
300  
1k  
3k  
10k  
30k  
100k  
300k  
1M  
Figure 32. Large Signal Response Unity-Gain Follower; VS = 15 V, RL = 10 kΩ  
FREQUENCY (Hz)  
Figure 28. Crosstalk vs. Frequency  
10mV  
500ns  
V+  
0.01µF  
100  
90  
8
+
1/2  
V
IN  
AD822  
V
OUT  
100pF  
R
L
0.01µF  
4
10  
Figure 29. Unity-Gain Follower  
0%  
5V  
10µs  
Figure 33. Small Signal Response Unity-Gain Follower; VS = 15 V, RL = 10 kΩ  
100  
90  
1V  
2µs  
100  
90  
10  
0%  
10  
0%  
GND  
Figure 30. 20 V p-p, 25 kHz Sine Wave Input; Unity-Gain Follower; VS = 15 V,  
RL = 600 Ω  
V
OUT  
Figure 34. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 4 V Step  
V+  
20k  
2.2kΩ  
V+  
0.1µF  
1
1µF  
0.01µF  
8
2
3
6
5
8
1/2  
AD822  
1/2  
AD822  
7
5kΩ  
V
IN  
+
1/2  
AD822  
20V p-p  
+
+
5kΩ  
V
OUT  
100pF  
R
L
4
V
IN  
0.1µF  
1µF  
V
OUT  
CROSSTALK = 20 log  
Figure 35. Unity-Gain Follower  
10V  
IN  
V–  
Figure 31. Crosstalk Test Circuit  
Rev. I | Page 15 of 24  
 
AD822  
10kΩ  
20kΩ  
V
IN  
10mV  
2µs  
V
V+  
OUT  
0.01µF  
100  
90  
8
1/2  
AD822  
+
100pF  
R
L
4
10  
Figure 36. Gain-of-Two Inverter  
0%  
GND  
1V  
2µs  
Figure 39. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 20 mV Step,  
Centered 20 mV Below Ground, RL = 10 kΩ  
100  
90  
1V  
2µs  
100  
90  
10  
0%  
GND  
10  
Figure 37. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 5 V Step  
0%  
GND  
Figure 40. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 2.5 V Step,  
Centered −1.25 V Below Ground, RL = 10 kΩ  
10mV  
2µs  
100  
90  
500mV  
10µs  
100  
90  
10  
0%  
GND  
10  
0%  
Figure 38. VS = 5 V, 0 V; Unity-Gain Follower Response to 40 mV Step,  
Centered 40 mV above Ground, RL = 10 kΩ  
GND  
Figure 41. VS = 3 V, 0 V; Gain-of-2 Inverter, VIN = 1.25 V, 25 kHz, Sine Wave  
Centered at −0.75 V, RL = 600 Ω  
Rev. I | Page 16 of 24  
 
AD822  
1V  
10µs  
. . . .  
. . . . . . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
100  
90  
10  
. . . . . . . .  
. . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
0%  
GND  
1V  
(a)  
10µs  
1V  
1V  
. . . . . . . . . . .  
. . .  
. . . . . . . . . . . .  
. . . .  
100 . . . .  
. . . .  
+V  
s
90  
10  
. . . .  
0% . . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
. . . .  
GND  
1V  
(b)  
5V  
R
P
V
IN  
V
OUT  
Figure 42. (a) Response with RP = 0; VIN from 0 V to +VS  
(b) VIN = 0 V to +VS + 200 mV  
V
OUT = 0 V to +VS  
RP = 49.9 kΩ  
Rev. I | Page 17 of 24  
 
AD822  
APPLICATIONS INFORMATION  
100k  
10k  
1k  
INPUT CHARACTERISTICS  
WHENEVER JOHNSON NOISE IS GREATER THAN  
AMPLIFIER NOISE, AMPLIFIER NOISE CAN BE  
CONSIDERED NEGLIGIBLE FOR APPLICATION.  
In the AD822, N-channel JFETs are used to provide a low offset,  
low noise, high impedance input stageꢀ Minimum input common-  
mode voltage extends from 0ꢀ2 V below −VS to ± V less than +VSꢀ  
Driving the input voltage closer to the positive rail causes a loss  
of amplifier bandwidth (as can be seen by comparing the large  
signal responses shown in Figure 34 and Figure 37) and increased  
common-mode voltage error as illustrated in Figure 20ꢀ  
1kHz  
RESISTOR JOHNSON  
NOISE  
100  
10  
10Hz  
The AD822 does not exhibit phase reversal for input voltages  
up to and including +VSFigure 42 shows the response of an  
AD822 voltage follower to a 0 V to 5 V (+VS) square wave inputꢀ  
The input and output are superimposedꢀ The output tracks the  
input up to +VS without phase reversalꢀ The reduced bandwidth  
above a 4 V input causes the rounding of the output waveformꢀ  
For input voltages greater than +VS, a resistor in series with the  
AD822 noninverting input prevents phase reversal, at the expense  
of greater input voltage noiseꢀ This is illustrated in Figure 42ꢀ  
1
AMPLIFIER-GENERATED  
NOISE  
0.1  
10k  
100k  
10M  
100M  
10G  
1M  
1G  
SOURCE IMPEDANCE ()  
Figure 43. Total Noise vs. Source Impedance  
OUTPUT CHARACTERISTICS  
The AD822 unique bipolar rail-to-rail output stage swings within  
5 mV of the negative supply and ±0 mV of the positive supply with  
no external resistive loadꢀ The approximate output saturation  
resistance of the AD822 is 40 Ω sourcing and 20 Ω sinking, which  
can be used to estimate output saturation voltage when driving  
heavier current loadsꢀ For instance, when sourcing 5 mA, the  
saturation voltage to the positive supply rail is 200 mV; when  
sinking 5 mA, the saturation voltage to the negative rail is ±00 mVꢀ  
Because the input stage uses N-channel JFETs, input current  
during normal operation is negative; the current flows out from  
the input terminalsꢀ If the input voltage is driven more positive  
than +VS − 0ꢀ4 V, then the input current reverses direction as  
internal device junctions become forward biasedꢀ This is illu-  
strated in Figure 7ꢀ  
A current limiting resistor should be used in series with the input  
of the AD822 if there is a possibility of the input voltage exceed-  
ing the positive supply by more than 300 mV, or if an input voltage  
is applied to the AD822 when +VS or −VS = 0 VThe amplifier is  
damaged if left in that condition for more than ±0 secondsꢀ A ± kΩ  
resistor allows the amplifier to withstand up to ±0 V of conti-  
nuous overvoltage and increases the input voltage noise by a  
negligible amountꢀ  
The open-loop gain characteristic of the amplifier changes as a  
function of resistive load, as shown in Figure ±0 to Figure ±3ꢀ  
For load resistances over 20 kΩ, the AD822 input error voltage  
is virtually unchanged until the output voltage is driven to ±80 mV  
of either supplyꢀ  
If the AD822 output is overdriven so that either of the output  
devices are saturated, the amplifier recovers within 2 ꢁs of its  
input returning to the linear operating region of the amplifierꢀ  
Input voltages less than −VS are a completely different storyꢀ The  
amplifier can safely withstand input voltages 20 V below the  
negative supply voltage if the total voltage from the positive  
supply to the input terminal is less than 36 VIn addition, the  
input stage typically maintains picoampere (pA) level input  
currents across that input voltage rangeꢀ  
Direct capacitive loads interact with the effective output imped-  
ance of the amplifier to form an additional pole in the amplifier  
feedback loop, which can cause excessive peaking on the pulse  
response or loss of stabilityꢀ The worst case occurs when the  
amplifier is used as a unity-gain followerꢀ Figure 44 shows the  
AD822 pulse response as a unity-gain follower driving 350 pFꢀ  
This amount of overshoot indicates approximately 20° of phase  
margin—the system is stable, but nearing the edgeꢀ Configurations  
with less loop gain, and as a result less loop bandwidth, are  
much less sensitive to capacitance load effectsꢀ  
The AD822 is designed for ±3 nV/√Hz wideband input voltage  
noise and maintains low noise performance to low frequencies  
(refer to Figure ±4)ꢀ This noise performance, along with the  
AD822 low input current and current noise, means that the  
AD822 contributes negligible noise for applications with source  
resistances greater than ±0 kΩ and signal bandwidths greater  
than ± kHzꢀ This is illustrated in Figure 43ꢀ  
Rev. I | Page 18 of 24  
 
 
 
 
AD822  
Figure 46 shows a method for extending capacitance load drive  
capability for a unity-gain followerꢀ With these component  
values, the circuit drives 5000 pF with a ±0% overshootꢀ  
20mV  
. . . . . . . .  
2µs  
. . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
100  
90  
V+  
0.01µF  
8
+
1/2  
100  
V
IN  
AD822  
V
OUT  
0.01µF  
20pF  
C
4
L
10  
. . . . . . . .  
. . . .  
. . . . . . . . . . . .  
. . . . . . . . . . . . . . . .  
0%  
V–  
20kΩ  
Figure 46. Extending Unity-Gain Follower Capacitive Load Capability  
Beyond 350 pF  
Figure 44. Small Signal Response of AD822 as  
Unity-Gain Follower Driving 350 pF  
Figure 45 is a plot of noise gain vsꢀ capacitive load that results in  
a 20° phase margin for the AD822ꢀ Noise gain is the inverse of  
the feedback attenuation factor provided by the feedback  
network in useꢀ  
SINGLE-SUPPLY VOLTAGE-TO-FREQUENCY  
CONVERTER  
The circuit shown in Figure 47 uses the AD822 to drive a low  
power timer that produces a stable pulse of width t±ꢀ The positive  
going output pulse is integrated by R± and C± and used as one  
input to the AD822 that is connected as a differential integratorꢀ  
The other input (nonloading) is the unknown voltage, VINꢀ The  
AD822 output drives the timer trigger input, closing the overall  
feedback loopꢀ  
5
4
3
10V  
U4  
REF02  
= 5V  
C5  
0.1µF  
V
REF  
2
4
6
5
CMOS  
74HCO4  
OUT2  
OUT1  
R
C3  
0.1µF  
3
SCALE  
10k  
2
1
U3A  
2
U3B  
3
1
4
U2  
CMOS 555  
R2  
499kΩ  
1%  
0.01µF, 2%  
C1  
300  
1k  
3k  
10k  
30k  
8
4
R3  
116kΩ  
CAPACITIVE LOAD FOR 20° PHASE MARGIN (pF)  
U1  
R
V+  
6
3
5
THR  
+
OUT  
CV  
R1  
1/2  
2
7
499kΩ  
1%  
TR  
AD822B  
V
DIS  
IN  
GND  
C2  
0.01µF  
2%  
C
L
1
R
F
C4  
0.01µF  
0V TO 2.5V  
FULL SCALE  
R1  
NOTES  
1. f  
= V  
/
(V  
× t ), t = 1.1 × R3 × C6.  
1 1  
Figure 45. Noise Gain vs. Capacitive Load Tolerance  
OUT  
IN  
= 25kHzRfESFAS SHOWN.  
2. R3 = 1% METAL FILM <50ppm/°C TC.  
3. R = 10% 20T FILM <100ppm/°C TC.  
SCALE  
4. t = 33µF FOR f  
= 20kHz @ V = 2.0V.  
OUT IN  
1
Figure 47. Single-Supply Voltage-to-Frequency Converter  
Typical AD822 bias currents of 2 pA allow Mꢂ range source  
impedances with negligible dc errorsꢀ Linearity errors on the  
order of 0ꢀ0±% full scale can be achieved with this circuitꢀ This  
performance is obtained with a 5 V single supply that delivers  
less than ± mA to the entire circuitꢀ  
Rev. I | Page 19 of 24  
 
 
 
 
 
AD822  
SINGLE-SUPPLY PROGRAMMABLE GAIN  
INSTRUMENTATION AMPLIFIER  
OHMTEK  
PART # 1043  
R1  
90k  
R2  
9kΩ  
R3  
1kΩ  
R4  
1kΩ  
R5  
9kΩ  
R6  
90kΩ  
+
V
REF  
The AD822 can be configured as a single-supply instrumenta-  
tion amplifier that is able to operate from single supplies down  
to 3 V or dual supplies up to ±±5 VUsing only one AD822 rather  
than three separate op amps, this circuit is cost and power efficientꢀ  
The 2 pA bias currents of the AD822 FET inputs minimize  
offset errors caused by high unbalanced source impedancesꢀ  
G = 10  
G = 100  
G = 100  
G = 10  
V+  
0.1µF  
2
3
6
5
1/2  
AD822  
1/2  
7
+
1
R
P
An array of precision thin film resistors sets the in-amp gain to  
be either ±0 or ±00ꢀ These resistors are laser trimmed to ratio  
match to 0ꢀ0±% and have a maximum differential TC of 5 ppm/°Cꢀ  
AD822  
1kΩ  
+
+
V
OUT  
V
V
IN1  
4
R
P
1kΩ  
IN2  
R6  
R4 + R5  
Table 6. In-Amp Performance  
Parameters  
(G = 10) V  
OUT  
= (V  
IN1  
– V  
IN2  
)
+V  
1+  
REF  
(
)
VS = 3 V, 0 V  
VS = 5 V  
R5 + R6  
R4  
(G = 100) V  
OUT  
= (V  
IN1  
– V  
IN2  
)
+V  
REF  
1+  
(
)
CMRR  
74 dB  
80 dB  
Common-Mode Voltage Range −0.2 V to +2 V −5.2 V to +4 V  
3 dB BW  
G = 10  
G = 100  
tSETTLING  
2 V Step  
5 V Step  
Noise @ f = 1 kHz  
G = 10  
G = 100  
ISUPPLY (Total)  
Figure 49. A Single-Supply Programmable Instrumentation Amplifier  
LOW DROPOUT BIPOLAR BRIDGE DRIVER  
180 kHz  
18 kHz  
180 kHz  
18 kHz  
The AD822 can be used for driving a 350 Ω Wheatstone bridgeꢀ  
Figure 50 shows one-half of the AD822 being used to buffer the  
AD589, a ±ꢀ235 V low power referenceꢀ The output of 4ꢀ5 V can  
be used to drive an analog-to-digital converter (ADC) front endꢀ  
The other half of the AD822 is configured as a unity-gain inverter  
and generates the other bridge input of −4ꢀ5 VResistor R± and  
Resistor R2 provide a constant current for bridge excitationꢀ The  
AD620 low power instrumentation amplifier is used to condition  
the differential output voltage of the bridgeꢀ The gain of the AD620  
is programmed using an external resistor RG and determined by  
2 μs  
5 μs  
270 nV/√Hz  
2.2 μV/√Hz  
1.10 mA  
270 nV/√Hz  
2.2 μV/√Hz  
1.15 mA  
5µs  
49ꢀ9 k  
100 . . . . . . . .  
. . . .  
. . . . . . . . . . . .  
. . . . . . . . . . .  
. . .  
G   
±  
RG  
90  
V+  
49.9kꢀ  
+1.235V  
+
8
R1  
20ꢀ  
3
+
1/2  
AD822  
1
TO A/D CONVERTER  
REFERENCE INPUT  
AD589  
2
10  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
. . . .  
. . . . . . . .  
+V  
S
0%  
25.4k1%  
10k1%  
350ꢀ  
1V  
7
350ꢀ  
350ꢀ  
2
3
6
R
AD620  
350ꢀ  
G
Figure 48. Pulse Response of In-Amp to a 500 mV p-p Input Signal;  
VS = 5 V, 0 V; Gain = 0  
+
5
4
10k1%  
V
REF  
–V  
S
6
5
1/2  
7
10k1%  
V+  
0.1μF  
GND  
0.1μF  
V–  
+5V  
–5V  
–4.5V  
+
+
+
AD822  
1μF  
1μF  
+
4
R2  
20ꢀ  
+
V–  
Figure 50. Low Dropout Bipolar Bridge Driver  
Rev. I | Page 20 of 24  
 
 
 
AD822  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 51. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
3.20  
3.00  
2.80  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
8
1
5
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
4
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
PIN 1  
IDENTIFIER  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.65 BSC  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.95  
0.85  
0.75  
15° MAX  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
1.10 MAX  
0.80  
0.55  
0.40  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COPLANARITY  
0.10  
Figure 52. 8-Lead Standard Small Outline Package [SOIC_N]  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Figure 53. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. I | Page 21 of 24  
 
AD822  
ORDERING GUIDE  
Model1  
AD822AN  
AD822ANZ  
AD822AR  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead PDIP  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
Branding  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD822AR-REEL  
AD822AR-REEL7  
AD822ARZ  
AD822ARZ-REEL  
AD822ARZ-REEL7  
AD822ARMZ  
AD822ARMZ-REEL  
AD822BR  
AD822BR-REEL  
AD822BR-REEL7  
AD822BRZ  
AD822BRZ-REEL  
AD822BRZ-REEL7  
#B4A  
#B4A  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
1 Z = RoHS Compliant Part, # denotes RoHS-compliant product may be top or bottom marked.  
SPICE model is available at wwwꢀanalogꢀcomꢀ  
Rev. I | Page 22 of 24  
 
AD822  
NOTES  
Rev. I | Page 23 of 24  
AD822  
NOTES  
©1993–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00874-0-1/10(I)  
Rev. I | Page 24 of 24  

相关型号:

5962-9320901MPX

Voltage-Feedback Operational Amplifier
ETC

5962-9321001MCX

Line Driver
ETC

5962-9321101MCA

IC DUAL LINE RECEIVER, CDIP14, CERAMIC, DIP-14, Line Driver or Receiver
NSC

5962-9321101MCX

Line Receiver
ETC

5962-9321201MPX

Voltage-Mode SMPS Controller
ETC

5962-9321401EX

Voltage Reference
ETC

5962-9321401MEA

MICROCIRCUIT, LINEAR, PRECISION ±10 V VOLTAGE REFERENCE, MONOLITHIC SILICON
ETC

5962-9321501M2A

Stepper Motor Controller, 0.5A, CQCC20, CERAMIC, LCC-20
WEDC

5962-9321501M2X

Stepper Motor Controller/Driver
ETC

5962-9321501MEX

Stepper Motor Controller/Driver
ETC

5962-9321601Q2X

Voltage-Feedback Operational Amplifier
ETC

5962-9321601QPA

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI