5962-8964701PA [ADI]

High Speed, Low Power Monolithic Op Amp; 高速,低功耗单片运算放大器
5962-8964701PA
型号: 5962-8964701PA
厂家: ADI    ADI
描述:

High Speed, Low Power Monolithic Op Amp
高速,低功耗单片运算放大器

运算放大器 放大器电路
文件: 总12页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Low Power  
Monolithic Op Amp  
a
AD847  
CO NNECTIO N D IAGRAM  
FEATURES  
Superior Perform ance  
High Unity Gain BW: 50 MHz  
Low Supply Current: 5.3 m A  
P lastic D IP (N),  
Sm all O utline (R) and  
Cerdip (Q) P ackages  
High Slew Rate: 300 V/ s  
Excellent Video Specifications  
0.04% Differential Gain (NTSC and PAL)  
0.19؇ Differential Phase (NTSC and PAL)  
Drives Any Capacitive Load  
Fast Settling Tim e to 0.1% (10 V Step): 65 ns  
Excellent DC Perform ance  
High Open-Loop Gain 5.5 V/ m V (RLOAD = 1 k)  
Low Input Offset Voltage: 0.5 m V  
Specified for ؎5 V and ؎15 V Operation  
Available in a Wide Variety of Options  
Plastic DIP and SOIC Packages  
Cerdip Package  
Die Form  
MIL-STD-883B Processing  
Tape & Reel (EIA-481A Standard)  
Dual Version Available: AD827 (8 Lead)  
Enhanced Replacem ent for LM6361  
Replacem ent for HA2544, HA2520/ 2/ 5 and EL2020  
specifications which include an open-loop gain of 3500 V/V  
(500 load) and low input offset voltage of 0.5 mV. Common-  
mode rejection is a minimum of 78 dB. Output voltage swing is  
±3 V into loads as low as 150 . Analog Devices also offers  
over 30 other high speed amplifiers from the low noise AD829  
(1.7 nV/Hz) to the ultimate video amplifier, the AD811, which  
features 0.01% differential gain and 0.01° differential phase.  
APPLICATIONS  
Video Instrum entation  
Im aging Equipm ent  
AP P LICATIO N H IGH LIGH TS  
Copiers, Fax, Scanners, Cam eras  
High Speed Cable Driver  
High Speed DAC and Flash ADC Buffers  
1. As a buffer the AD847 offers a full-power bandwidth of  
12.7 MHz (5 V p-p with ±5 V supplies) making it outstand-  
ing as an input buffer for flash A/D converters.  
2. T he low power and small outline package of the AD847  
make it very well suited for high density applications such as  
multiple pole active filters.  
P RO D UCT D ESCRIP TIO N  
T he AD847 represents a breakthrough in high speed amplifiers  
offering superior ac & dc performance and low power, all at low  
cost. T he excellent dc performance is demonstrated by its ±5 V  
3. T he AD847 is internally compensated for unity gain opera-  
tion and remains stable when driving any capacitive load.  
6
5.5  
5
4.5  
4
0
5
10  
15  
20  
SUPPLY VOLTAGE – ± Volts  
Quiescent Current vs. Supply Voltage  
AD847 Driving Capacitive Loads  
REV. F  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
(@ T = +25؇C, unless otherwise noted)  
AD847–SPECIFICATIONS  
A
Model  
AD 847J  
AD 847AR  
Typ  
Conditions  
VS  
Min  
Typ  
Max  
Min  
Max  
Units  
INPUT OFFSET VOLT AGE1  
T MIN to T MAX  
±5 V  
0.5  
1
3.5  
0.5  
1
4
mV  
mV  
Offset Drift  
15  
15  
µV/°C  
INPUT BIAS CURRENT  
T MIN to T MAX  
±5 V, ±15 V  
±5 V, ±15 V  
3.3  
6.6  
7.2  
3.3  
6.6  
10  
µA  
µA  
INPUT OFFSET CURRENT  
T MIN to T MAX  
50  
300  
400  
50  
300  
500  
nA  
nA  
Offset Current Drift  
0.3  
0.3  
nA/°C  
OPEN-LOOP GAIN  
VOUT = ±2.5 V  
RLOAD = 500 Ω  
T MIN to T MAX  
RLOAD = 150 Ω  
VOUT = ±10 V  
RLOAD = 1 kΩ  
T MIN to T MAX  
±5 V  
2
1
3.5  
1.6  
5.5  
2
1
3.5  
1.6  
5.5  
V/mV  
V/mV  
V/mV  
±15 V  
3
1.5  
3
1.5  
V/mV  
V/mV  
DYNAMIC PERFORMANCE  
Unity Gain Bandwidth  
±5 V  
±15 V  
35  
50  
35  
50  
MHz  
MHz  
Full Power Bandwidth2  
VOUT = 5 V p-p  
RLOAD = 500 ,  
VOUT = 20 V p-p,  
RLOAD = 1 kΩ  
±5 V  
12.7  
12.7  
MHz  
±15 V  
±5 V  
±15 V  
4.7  
200  
300  
4.7  
200  
300  
MHz  
V/µs  
V/µs  
Slew Rate3  
RLOAD = 1 kΩ  
225  
225  
Settling T ime  
to 0.1%, RLOAD = 250 Ω  
–2.5 V to +2.5 V  
10 V Step, AV = –1  
–2.5 V to +2.5 V  
10 V Step, AV = –1  
CLOAD = 10 pF  
±5 V  
±15 V  
±5 V  
±15 V  
±15 V  
65  
65  
140  
120  
65  
65  
140  
120  
ns  
ns  
ns  
ns  
to 0.01%, RLOAD = 250 Ω  
Phase Margin  
RLOAD= 1 kΩ  
f 4.4 MHz, RLOAD = 1 kΩ  
f 4.4 MHz, RLOAD = 1 kΩ  
50  
0.04  
0.19  
50  
0.04  
0.19  
Degree  
%
Degree  
Differential Gain  
Differential Phase  
±15 V  
±15 V  
COMMON-MODE REJECT ION  
VCM = ±2.5 V  
VCM = ±12 V  
T MIN to T MAX  
±5 V  
±15 V  
78  
78  
75  
95  
95  
78  
78  
75  
95  
95  
dB  
dB  
dB  
POWER SUPPLY REJECT ION  
VS = ±5 V to ±15 V  
T MIN to T MAX  
75  
72  
86  
75  
72  
86  
dB  
dB  
INPUT VOLT AGE NOISE  
INPUT CURRENT NOISE  
f = 10 kHz  
f = 10 kHz  
±15 V  
±15 V  
15  
15  
nV/Hz  
pA/Hz  
1.5  
1.5  
INPUT COMMON-MODE  
VOLT AGE RANGE  
±5 V  
+4.3  
–3.4  
+14.3  
–13.4  
+4.3  
–3.4  
+14.3  
–13.4  
V
V
V
V
±15 V  
OUT PUT VOLT AGE SWING  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
±5 V  
±5 V  
±15 V  
±15 V  
±15 V  
3.0  
2.5  
12  
3.6  
3
3.0  
2.5  
12  
3.6  
3
±V  
±V  
±V  
±V  
mA  
10  
10  
Short-Circuit Current  
INPUT RESIST ANCE  
INPUT CAPACIT ANCE  
OUT PUT RESIST ANCE  
32  
32  
300  
1.5  
15  
300  
1.5  
15  
kΩ  
pF  
Open Loop  
POWER SUPPLY  
Operating Range  
Quiescent Current  
؎4.5  
؎18  
6.0  
7.3  
6.3  
7.6  
؎4.5  
؎18  
6.0  
7.3  
6.3  
7.6  
V
±5 V  
4.8  
5.3  
4.8  
5.3  
mA  
mA  
mA  
T MIN to T MAX  
T MIN to T MAX  
±15 V  
mA  
N
OT ES  
lInput Offset Voltage Specifications are guaranteed after 5 minutes at T A = +25°C.  
2Full Power Bandwidth = Slew Rate/2 π VPEAK  
.
3Slew Rate is measured on rising edge.  
All min and max specifications are guaranteed. Specifications in boldface are 100% tested at final electrical test.  
Specifications subject to change without notice.  
–2–  
REV. F  
AD847  
Model  
AD 847AQ  
Typ  
AD 847S  
Typ  
Conditions  
VS  
Min  
Max  
Min  
Max  
Units  
INPUT OFFSET VOLT AGE1  
±5 V  
0.5  
1
4
0.5  
1
4
mV  
mV  
T MIN to T MAX  
Offset Drift  
15  
15  
µV/°C  
INPUT BIAS CURRENT  
±5 V, ±15 V  
±5 V, ±15 V  
3.3  
5
7.5  
3.3  
5
7.5  
µA  
µA  
T MIN to T MAX  
T MIN to T MAX  
INPUT OFFSET CURRENT  
50  
300  
400  
50  
300  
400  
nA  
nA  
Offset Current Drift  
OPEN-LOOP GAIN  
0.3  
0.3  
nA/°C  
VOUT = ±2.5 V  
RLOAD = 500 Ω  
T MIN to T MAX  
RLOAD = 150 Ω  
VOUT = = ±10 V  
RLOAD = 1 kΩ  
T MIN to T MAX  
±5 V  
2
1
3.5  
1.6  
5.5  
2
1
3.5  
1.6  
5.5  
V/mV  
V/mV  
V/mV  
±15 V  
3
1.5  
3
1.5  
V/mV  
V/mV  
DYNAMIC PERFORMANCE  
Unity Gain Bandwidth  
±5 V  
±15 V  
35  
50  
35  
50  
MHz  
MHz  
Full Power Bandwidth2  
VOUT = 5 V p-p  
RLOAD = 500 ,  
VOUT = 20 V p-p,  
RLOAD = 1 kΩ  
±5 V  
12.7  
12.7  
MHz  
±15 V  
±5 V  
±15 V  
4.7  
200  
300  
4.7  
200  
300  
MHz  
V/µs  
V/µs  
Slew Rate3  
RLOAD = 1 kΩ  
225  
225  
Settling T ime  
to 0.1%, RLOAD = 250 Ω  
–2.5 V to +2.5 V  
10 V Step, AV = –1  
–2.5 V to +2.5 V  
10 V Step, AV = –1  
CLOAD = 10 pF  
±5 V  
±15 V  
±5 V  
±15 V  
±15 V  
65  
65  
140  
120  
65  
65  
140  
120  
ns  
ns  
ns  
ns  
to 0.01%, RLOAD = 250 Ω  
Phase Margin  
R
LOAD = 1 kΩ  
50  
0.04  
0.19  
50  
0.04  
0.19  
Degree  
%
Degree  
Differential Gain  
Differential Phase  
f 4.4 MHz, RLOAD = 1 kΩ  
f 4.4 MHz, RLOAD = 1 kΩ  
±15 V  
±15 V  
COMMON-MODE REJECT ION  
VCM = ±2.5 V  
VCM = ±12 V  
T MIN to T MAX  
±5 V  
±15 V  
80  
80  
75  
95  
95  
80  
80  
75  
95  
95  
dB  
dB  
dB  
POWER SUPPLY REJECT ION  
VS = ±5 V to ±15 V  
T MIN to T MAX  
75  
72  
86  
75  
72  
86  
dB  
dB  
INPUT VOLT AGE NOISE  
INPUT CURRENT NOISE  
f = 10 kHz  
f = 10 kHz  
±15 V  
±15 V  
15  
15  
nV/Hz  
pA/Hz  
1.5  
1.5  
INPUT COMMON-MODE  
VOLT AGE RANGE  
±5 V  
+4.3  
–3.4  
+14.3  
–13.4  
+4.3  
–3.4  
+14.3  
–13.4  
V
V
V
V
±15 V  
OUT PUT VOLT AGE SWING  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 1 kΩ  
±5 V  
±5 V  
±15 V  
±15 V  
±15 V  
3.0  
2.5  
12  
3.6  
3
3.0  
2.5  
12  
3.6  
3
±V  
±V  
±V  
±V  
mA  
RLOAD  
=
500 Ω  
10  
10  
Short-Circuit Current  
INPUT RESIST ANCE  
INPUT CAPACIT ANCE  
OUT PUT RESIST ANCE  
32  
32  
300  
1.5  
15  
300  
1.5  
15  
kΩ  
pF  
Open Loop  
POWER SUPPLY  
Operating Range  
Quiescent Current  
؎4.5  
؎18  
5.7  
7.0  
6.3  
7.6  
؎4.5  
؎18  
5.7  
7.8  
6.3  
8.4  
V
±5 V  
4.8  
5.3  
4.8  
5.3  
mA  
mA  
mA  
mA  
T MIN to T MAX  
T MIN to T MAX  
±15 V  
REV. F  
–3–  
AD847  
ABSO LUTE MAXIMUM RATINGS 1  
ESD SUSCEP TIBILITY  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
ESD (electrostatic discharge) sensitive device. Electrostatic  
charges as high as 4000 volts, which readily accumulate on the  
human body and on test equipment, can discharge without de-  
tection. Although the AD847 features proprietary ESD protec-  
tion circuitry, permanent damage may still occur on these  
devices if they are subjected to high energy electrostatic dis-  
charges. T herefore, proper ESD precautions are recommended  
to avoid any performance degradation or loss of functionality.  
Internal Power Dissipation2  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Watts  
Small Outline (R) . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 Watts  
Cerdip (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Watts  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Storage T emperature Range (Q) . . . . . . . . . –65°C to +150°C  
(N, R) . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Junction T emperature . . . . . . . . . . . . . . . . . . . . . . . . . . 175°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . +300°C  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only, and functional  
operation of the device at these or any other conditions above those indicated in  
the operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Mini-DIP Package: θJA = 100°C/Watt; θJC = 33°C/Watt  
Cerdip Package: θJA = 110°C/Watt; θJC = 30°C/Watt  
Small Outline Package: θJA = 155°C/Watt; θJC = 33°C/Watt  
METALIZATIO N P H O TO GRAP H  
Contact factory for latest dimensions.  
D imensions shown in inches and (mm).  
O RD ERING GUID E  
Tem perature  
Range – ؇C  
P ackage  
D escription  
P ackage  
O ption  
Models*  
AD847JN  
AD847JR  
AD847AQ  
AD847AR  
AD847SQ  
AD847SQ/883B  
5962-8964701PA  
0 to +70  
0 to +70  
Plastic  
SOIC  
Cerdip  
SOIC  
Cerdip  
Cerdip  
Cerdip  
N-8  
R-8  
Q-8  
R-8  
Q-8  
Q-8  
Q-8  
–40 to +85  
–40 to +85  
–55 to +125  
–55 to +125  
–55 to +125  
*AD847 also available in J and S grade chips, and AD847JR and AD847AR are available  
*in tape and reel.  
–4–  
REV. F  
AD847  
(@ +25؇C and V = ؎15 V, unless otherwise noted)  
Typical Characteristics  
S
20  
20  
15  
15  
+V  
IN  
+V  
OUT  
10  
10  
–V  
IN  
–V  
OUT  
5
0
5
0
R
= 500Ω  
LOAD  
10  
0
5
10  
SUPPLY VOLTAGE – ± Volts  
15  
20  
0
5
15  
20  
SUPPLY VOLTAGE – ± Volts  
Figure 1. Input Com m on-Mode Range vs. Supply Voltage  
Figure 2. Output Voltage Swing vs. Supply Voltage  
30  
6
25  
20  
5.5  
5
±15 V SUPPLIES  
15  
10  
4.5  
4
±5V SUPPLIES  
5
0
10  
100  
1k  
10k  
0
5
10  
15  
20  
LOAD RESISTANCE – Ω  
SUPPLY VOLTAGE – ± Volts  
Figure 3. Output Voltage Swing vs. Load Resistance  
Figure 4. Quiescent Current vs. Supply Voltage  
5
100  
10  
1
4
V
= ± 5V  
S
3
2
0.1  
0.01  
–60 –40 –20  
20  
40  
60  
80  
100 120 140  
0
10k  
100k  
1M  
10M  
100M  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 5. Input Bias Current vs. Tem perature  
Figure 6. Output Im pedance vs. Frequency  
REV. F  
–5–  
(@ +25؇C and V = ؎15 V, unless otherwise noted)  
AD847–Typical Characteristics  
S
7
35  
6
5
30  
25  
20  
15  
4
V
= ± 5V  
S
3
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
AMBIENT TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 8. Short-Circuit Current Lim it vs. Tem perature  
Figure 7. Quiescent Current vs. Tem perature  
100  
80  
52  
+100°  
+80°  
+60°  
+40°  
+20°  
0
±15V SUPPLIES  
1kLOAD  
51  
50  
60  
±5V SUPPLIES  
500LOAD  
40  
20  
49  
48  
0
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 10. Open-Loop Gain and Phase Margin  
vs. Frequency  
Figure 9. Gain Bandwidth Product vs. Tem perature  
80  
100  
V
= ±15V  
= ± 5V  
+SUPPLY  
80  
S
75  
70  
65  
60  
55  
50  
60  
V
S
–SUPPLY  
40  
20  
0
10  
100  
1k  
10k  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
LOAD RESISTANCE – Ω  
Figure 11. Open-Loop Gain vs. Load Resistance  
Figure 12. Power Supply Rejection vs. Frequency  
–6–  
REV. F  
AD847  
100  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
V
= ±1V p-p  
CM  
R = 1kΩ  
L
0
1M  
10M  
INPUT FREQUENCY – Hz  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 14. Large Signal Frequency Response  
Figure 13. Com m on-Mode Rejection vs. Frequency  
–70  
10  
8
–80  
6
3V RMS  
R =1kΩ  
L
4
–90  
2ND HARMONIC  
2
0.1%  
0.1%  
1%  
1%  
–100  
0
–2  
–110  
–4  
3RD HARMONIC  
–6  
–120  
–8  
–130  
–10  
0
100  
1k  
10k  
FREQUENCY – Hz  
100k  
20  
40  
60  
80  
100  
120  
140  
160  
SETTLING TIME – ns  
Figure 15. Output Swing and Error vs. Settling Tim e  
Figure 16. Harm onic Distortion vs. Frequency  
50  
40  
30  
20  
10  
0
450  
400  
350  
300  
250  
200  
150  
0
–60 –40 –20  
20  
40  
60  
80  
100 120 140  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 18. Slew Rate vs. Tem perature  
Figure 17. Input Voltage Noise Spectral Density  
REV. F  
–7–  
AD847  
Figure 19. Inverting Am plifier Configuration  
Figure 19a. Inverter Large  
Signal Pulse Response  
Figure 19b. Inverter Sm all  
Signal Pulse Response  
Figure 20. Noninverting Am plifier Configuration  
Figure 20a. Noninverting  
Figure 20b. Noninverting  
Large Signal Pulse Response  
Sm all Signal Pulse Response  
–8–  
REV. F  
AD847  
+V  
O FFSET NULLING  
S
T he input offset voltage of the AD847 is very low for a high  
speed op amp, but if additional nulling is required, the circuit  
shown in Figure 21 can be used.  
C
F
OUTPUT  
–IN  
+IN  
–V  
S
Figure 21. Offset Nulling  
NULL 1  
NULL 8  
INP UT CO NSID ERATIO NS  
An input resistor (RIN in Figure 20) is required in circuits where  
the input to the AD847 will be subjected to transient or con-  
tinuous overload voltages exceeding the ±6 V maximum differ-  
ential limit. T his resistor provides protection for the input  
transistors by limiting the maximum current that can be forced  
into their bases.  
Figure 22. AD847 Sim plified Schem atic  
GRO UND ING AND BYP ASSING  
In designing practical circuits with the AD847, the user must  
remember that whenever high frequencies are involved, some  
special precautions are in order. Circuits must be built with  
short interconnect leads. A large ground plane should be used  
whenever possible to provide a low resistance, low inductance  
circuit path, as well as minimizing the effects of high frequency  
coupling. Sockets should be avoided because the increased  
interlead capacitance can degrade bandwidth.  
For high performance circuits it is recommended that a resistor  
(RB in Figures 19 and 20) be used to reduce bias current errors  
by matching the impedance at each input. T he offset voltage er-  
ror will be reduced by more than an order of magnitude.  
TH EO RY O F O P ERATIO N  
Feedback resistors should be of low enough value to assure that  
the time constant formed with the capacitance at the amplifier  
summing junction will not limit the amplifier performance.  
Resistor values of less than 5 kare recommended. If a larger  
resistor must be used, a small (<10 pF) feedback capacitor in  
parallel with the feedback resistor, RF, may be used to compen-  
sate for the input capacitances and optimize the dynamic perfor-  
mance of the amplifier.  
T he AD847 is fabricated on Analog Devices’ proprietary  
complementary bipolar (CB) process which enables the con-  
struction of pnp and npn transistors with similar fT s in the  
600 MHz to 800 MHz region. T he AD847 circuit (Figure 22)  
includes an npn input stage followed by fast pnps in the folded  
cascode intermediate gain stage. T he CB pnps are also used in  
the current amplifying output stage. T he internal compensation  
capacitance that makes the AD847 unity gain stable is provided  
by the junction capacitances of transistors in the gain stage.  
Power supply leads should be bypassed to ground as close as  
possible to the amplifier pins. Ceramic disc capacitors of  
0.1 µF are recommended.  
T he capacitor, CF, in the output stage mitigates the effect of ca-  
pacitive loads. At low frequencies and with low capacitive  
loads, the gain from the compensation node to the output is  
very close to unity. In this case CF is bootstrapped and does not  
contribute to the compensation capacitance of the part. As the  
capacitive load is increased, a pole is formed with the output  
impedance of the output stage. T his reduces the gain, and  
therefore, CF is incompletely bootstrapped. Some fraction of CF  
contributes to the compensation capacitance, and the unity gain  
bandwidth falls. As the load capacitance is increased, the band-  
width continues to fall, and the amplifier remains stable.  
REV. F  
–9–  
AD847  
VID EO LINE D RIVER  
Figure 24 shows the AD847 driving 100 pF and 1000 pF loads.  
T he AD847 functions very well as a low cost, high speed line  
driver for either terminated or unterminated cables. Figure 23  
shows the AD847 driving a doubly terminated cable in a fol-  
lower configuration.  
T he termination resistor, RT , (when equal to the cable’s charac-  
teristic impedance) minimizes reflections from the far end of the  
cable. While operating from ±5 V supplies, the AD847 main-  
tains a typical slew rate of 200 V/µs, which means it can drive a  
±1 V, 30 MHz signal into a terminated cable.  
+V  
S
75Ω  
COAX  
R
IN  
100Ω  
0.1 µF  
Figure 24. AD847 Driving Capacitive Loads  
75Ω  
COAX  
V
IN  
V
AD847  
OUT  
FLASH AD C INP UT BUFFER  
75Ω  
R
BT  
75Ω  
R
75Ω  
T
T he 35 MHz unity gain bandwidth of the AD847 makes it an  
excellent choice for buffering the input of high speed flash A/D  
converters, such as the AD9048.  
0.1 µF  
500Ω  
–V  
S
Figure 25 shows the AD847 as a unity inverter for the input to  
the AD9048.  
500Ω  
C
C
0.1  
SEE TABLE I  
–5.2V  
AD589  
2k  
10kΩ  
Figure 23. Video Line Driver  
Table I. Video Line D river P erform ance Chart  
27  
100  
2N3906  
5
0.1  
AD741  
1k  
O ver-  
–3 dB BW shoot  
1k  
VIN*  
VSUP P LY CC  
1.5kΩ  
0.1µF  
0 dB or ±500 mV Step ±15  
0 dB or ±500 mV Step ±15  
0 dB or ±500 mV Step ±15  
0 dB or ±500 mV Step ±5  
0 dB or ±500 mV Step ±5  
0 dB or ±500 mV Step ±5  
20 pF 23 MHz  
15 pF 21 MHz  
0 pF 13 MHz  
20 pF 18 MHz  
15 pF 16 MHz  
4%  
0%  
0%  
2%  
0%  
0%  
ANALOG  
INPUT  
(0V TO +2V)  
R
B
R
1.5kΩ  
50Ω  
T
43Ω  
D1  
(MSB)  
V
AD847  
IN  
AD9048  
CONVERT  
TTL  
CONVERT  
SIGNAL  
0 pF  
11 MHz  
D8  
(LSB)  
V
V
*–3 dB bandwidth numbers are for the 0 dBm signal input. Overshoot numbers  
are the percent overshoot of the 1 volt step input.  
EE  
CC  
0.1µF  
0.1µF  
A back-termination resistor (RBT, also equal to the characteristic  
impedance of the cable) may be placed between the AD847 out-  
put and the cable input, in order to damp any reflected signals  
caused by a mismatch between RT and the cable’s characteristic  
impedance. T his will result in a flatter frequency response, al-  
though this requires that the op amp supply ±2 V to the output  
in order to achieve a ±1 V swing at resistor RT .  
+5.0V  
–5.2V  
Figure 25. Flash ADC Input Buffer  
–10–  
REV. F  
AD847  
A H igh Speed, Thr ee O p-Am p In-Am p  
T he input amplifier (A1 and A2) is an AD827, which is a dual  
version of the AD847. T his circuit has the optional flexibility of  
both dc and ac trims for common-mode rejection, plus the abil-  
ity to adjust for minimum settling time.  
T he circuit of Figure 26 lends itself well to CCD imaging and  
other video speed applications. It uses two high speed CB pro-  
cess op-amps: Amplifier A3, the output amplifier, is an AD847.  
EACH  
AMPLIFIER  
PIN 7 AD847,  
+15V  
COMM  
–15V  
+V  
S
PIN 8 AD827  
10µF  
10µF  
0.1µF  
0.1µF  
1µF  
1µF  
0.1µF  
0.1µF  
PIN 4  
AD847 & AD827  
–V  
S
1/2  
2–8pF  
SETTLING TIME  
AC CMR ADJUST  
AD827  
3
2
–V  
IN  
INPUT  
1
A1  
CMRR  
FREQUENCY  
2kΩ  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
88.3dB  
87.4dB  
86.2dB  
67.4dB  
47.1dB  
1kΩ  
1kΩ  
2kΩ  
2
V
OUT  
6
A3  
R
G
2kΩ  
3
R
L
2kΩ  
AD847  
1.87kΩ  
5pF  
6
5
7
A2  
DC CMR  
ADJUST  
200Ω  
+V  
IN  
1/2  
AD827  
2000Ω  
CIRCUIT GAIN =  
+ 1  
R
G
BANDWIDTH, SETTLING TIME AND TOTAL HARMONIC DISTORTION VS. GAIN  
THD + NOISE  
SMALL  
SIGNAL  
SETTLING  
TIME  
BELOW INPUT  
LEVEL  
C
ADJ  
GAIN  
R
G
(pF) BANDWIDTH TO 0.1%  
@ 10kHz  
1
2
10  
100  
OPEN 2–8  
16.1MHz  
14.7MHz  
4.5MHz  
660kHz  
200ns  
200ns  
370ns  
2.5µs  
82dB  
82dB  
81dB  
71dB  
2kΩ  
226Ω  
20Ω  
2–8  
2–8  
2–8  
Figure 26. A High Speed In-Am p Circuit for Data Acquisition  
REV. F  
–11–  
AD847  
H IGH SP EED D AC BUFFER  
(10.24 V for a 1 kresistor). Note that since the DAC gener-  
ates a positive current to ground, the voltage at the amplifier  
output will be negative. A 100 series resistor between the  
noninverting amplifier input and ground minimizes the offset  
effects of op amp input bias currents.  
T he wide bandwidth and fast settling time of the AD847 makes  
it a very good output buffer for high speed current-output D/A  
converters like the AD668. As shown in Figure 27, the op amp  
establishes a summing node at ground for the DAC output. T he  
output voltage is determined by the amplifier’s feedback resistor  
+15V  
10µF  
TO ANALOG  
GROUND PLANE  
0.1µF  
1
2
3
MSB  
V
24  
CC  
REFCOM 23  
1V NOMINAL  
REFERENCE INPUT  
22  
21  
20  
19  
+
REFIN1  
REFIN2  
10k  
4
5
1k  
I
OUT  
100Ω  
DIGITAL  
INPUTS  
AD668  
ANALOG  
OUTPUT  
6
R
LOAD  
AD847  
ANALOG GROUND PLANE  
7
ACOM 18  
ANALOG  
SUPPLY  
GROUND  
8
17  
16  
LCOM  
IBPO  
9
10µF  
0.1µF  
–15V  
+5V  
10  
11  
15  
14  
V
EE  
THCOM  
VTH  
100pF  
12 LSB  
13  
1kΩ  
Figure 27. High Speed DAC Buffer  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
Sm all O utline (R-8) P ackage  
Mini-D IP (N-8) P ackage  
Cerdip (Q-8) P ackage  
0.150 (3.81)  
0.005 (0.13) MIN  
0.055 (1.40) MAX  
5
8
5
0.25  
(6.35)  
0.31  
(7.87)  
8
PIN 1  
8
5
0.244 (6.20)  
0.228 (5.79)  
0.157 (3.99)  
0.150 (3.81)  
0.310 (7.87)  
1
4
PIN 1  
0.220 (5.59)  
PIN 1  
1
1
4
4
0.39 (9.91) MAX  
0.035±0.01  
(0.89±0.25)  
0.405 (10.29) MAX  
0.165±0.01  
(4.19±0.25)  
0.060 (1.52)  
0.015 (0.38)  
0.197 (5.01)  
0.189 (4.80)  
0.200  
(5.08)  
MAX  
0.18±0.03  
(4.57±0.76)  
0.125  
(3.18)  
MIN  
0.102 (2.59)  
0.094 (2.39)  
0.010 (0.25)  
0.004 (0.10)  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.019 (0.48)  
0.014 (0.36)  
0.050  
(1.27)  
BSC  
0.018±0.003  
(0.46±0.08) (2.54)  
0.10  
0.033  
(0.84)  
NOM  
SEATING  
PLANE  
BSC  
0.023 (0.58) 0.100  
0.070 (1.78)  
0.030 (0.76)  
0.020 (0.051) x 45  
CHAMF  
°
SEATING  
PLANE  
(2.54)  
BSC  
0.30 (7.62)  
REF  
0.014 (0.36)  
0.190 (4.82)  
0.170 (4.32)  
0.320 (8.13)  
0.290 (7.37)  
8
°
0.090  
(2.29)  
0°  
10  
0°  
°
0.011±0.003  
(0.28±0.08)  
0.030 (0.76)  
0.018 (0.46)  
0.098 (0.2482)  
0.075 (0.1905)  
0.015 (0.38)  
0.008 (0.20)  
15°  
0°  
15°  
0°  
All brand or product nam es m entioned are tradem arks or registered tradem arks of their respective holders.  
–12–  
REV. F  

相关型号:

5962-8964701PX

Voltage-Feedback Operational Amplifier
ETC

5962-8964801CA

Operational Amplifier, 1 Func, 15000uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14
ELANTEC

5962-8964801CX

Operational Amplifier, 1 Func, 10000uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14
ELANTEC

5962-89652012A

D Flip-Flop, FCT Series, 1-Func, Positive Edge Triggered, 4-Bit, True Output, CMOS, CQCC20, LCC-20
IDT

5962-89652012X

2-Input Digital Multiplexer
ETC

5962-8965201EX

2-Input Digital Multiplexer
ETC

5962-8965201FX

2-Input Digital Multiplexer
ETC

5962-89652022X

2-Input Digital Multiplexer
ETC

5962-8965202EX

2-Input Digital Multiplexer
ETC

5962-8965202FA

IC FCT SERIES, POSITIVE EDGE TRIGGERED D FLIP-FLOP, TRUE OUTPUT, CDFP, CERPACK-16, FF/Latch
WEDC

5962-8965202FX

2-Input Digital Multiplexer
ETC

5962-8965301LX

Video DAC without Color Palette
ETC