5962-8963701CX [ADI]

IC RMS TO DC CONVERTER, 0.15 MHz, CDIP14, CERDIP-14, Analog Special Function Converter;
5962-8963701CX
型号: 5962-8963701CX
厂家: ADI    ADI
描述:

IC RMS TO DC CONVERTER, 0.15 MHz, CDIP14, CERDIP-14, Analog Special Function Converter

CD 转换器
文件: 总20页 (文件大小:515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Precision, Wideband  
RMS-to-DC Converter  
AD637  
FEATURES  
High accuracy  
FUNCTIONAL BLOCK DIAGRAM  
BUFFER  
IN  
0.02% max nonlinearity, 0 V to 2 V rms input  
0.10% additional error to crest factor of 3  
Wide bandwidth  
8 MHz at 2 V rms input  
600 kHz at 100 mV rms  
BUFFER  
OUT  
25k  
RMS OUT  
ABSOLUTE  
VALUE  
SQUARER/  
DIVIDER  
V
IN  
Computes  
True rms  
Square  
Mean square  
25kΩ  
DENOMINATOR  
IN  
C
AV  
Absolute value  
OUTPUT  
OFFSET  
dB output (60 dB range)  
Chip select/power-down feature allows  
Analog three-state operation  
Quiescent current reduction from 2.2 mA to 350 µA  
14-lead SBDIP, 14-lead low cost CERDIP, and 16-lead SOIC_W  
BIAS  
COM  
CS  
Figure 1. SBDIP (D-14) and CERDIP (Q-14) Packages  
GENERAL DESCRIPTION  
The input circuitry of the AD637 is protected from overload  
voltages that are in excess of the supply levels. The inputs are  
not damaged by input signals if the supply voltages are lost.  
The AD637 is a complete high accuracy, monolithic rms-to-dc  
converter that computes the true rms value of any complex  
waveform. It offers performance that is unprecedented in  
integrated circuit rms-to-dc converters and comparable to  
discrete and modular techniques in accuracy, bandwidth, and  
dynamic range. A crest factor compensation scheme in the  
AD637 permits measurements of signals with crest factors of up  
to 10 with less than 1% additional error. The circuits wide  
bandwidth permits the measurement of signals up to 600 kHz  
with inputs of 200 mV rms and up to 8 MHz when the input  
levels are above 1 V rms.  
The AD637 is available in Accuracy Grades J and K for  
commercial temperature range (0°C to 70°C) applications;  
Accuracy Grades A and B for industrial range (−40°C to +85°C)  
applications; and Accuracy Grade S rated over the −55°C to  
+125°C temperature range. All versions are available in  
hermetically sealed, 14-lead SBDIP, 14-lead CERDIP, and  
16-lead SOIC packages.  
The AD637 computes the true root-mean-square, mean-square,  
or absolute value of any complex ac (or ac plus dc) input  
waveform and gives an equivalent dc output voltage. The true  
rms value of a waveform is more useful than an average  
rectified signal since it relates directly to the power of the signal.  
The rms value of a statistical signal is also related to the  
standard deviation of the signal.  
As with previous monolithic rms converters from ADI, the  
AD637 has an auxiliary dB output available to the user. The  
logarithm of the rms output signal is brought out to a separate  
pin, allowing direct dB measurement with a useful range of 60  
dB. An externally programmed reference current allows the  
user to select the 0 dB reference voltage to correspond to any  
level between 0.1 V and 2.0 V rms.  
The AD637 is laser wafer trimmed to achieve rated  
performance without external trimming. The only external  
component required is a capacitor that sets the averaging time  
period. The value of this capacitor also determines low  
frequency accuracy, ripple level, and settling time.  
A chip select connection on the AD637 permits the user to  
decrease the supply current from 2.2 mA to 350 µA during periods  
when the rms function is not in use. This feature facilitates the  
addition of precision rms measurement to remote or hand-held  
applications where minimum power consumption is critical. In  
addition, when the AD637 is powered down, the output goes to a  
high impedance state. This allows several AD637s to be tied  
together to form a wideband true rms multiplexer.  
The on-chip buffer amplifier can be used either as an input  
buffer or in an active filter configuration. The filter can be used  
to reduce the amount of ac ripple, thereby increasing accuracy.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2005 Analog Devices, Inc. All rights reserved.  
AD637  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Frequency Response .................................................................. 12  
AC Measurement Accuracy and Crest Factor............................ 12  
Connection for dB Output........................................................ 13  
dB Calibration............................................................................. 15  
Low Frequency Measurements................................................. 15  
Vector Summation ..................................................................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Functional Description.................................................................... 8  
Standard Connection................................................................... 9  
Chip Select..................................................................................... 9  
Optional Trims for High Accuracy............................................ 9  
Choosing the Averaging Time Constant................................. 10  
REVISION HISTORY  
4/05—Rev. F to Rev. G  
3/02—Rev. E to Rev. F  
Edits to Ordering Guide ...................................................................3  
Updated Format..................................................................Universal  
Changes to Figure 1.......................................................................... 1  
Changes to General Description .................................................... 1  
Deleted Product Highlights............................................................. 1  
Moved Figure 4 to Page.................................................................... 8  
Changes to Figure 5.......................................................................... 9  
Changes to Figure 8........................................................................ 10  
Changes to Figure 11, Figure 12, Figure 13, and Figure 14....... 11  
Changes to Figure 19...................................................................... 14  
Changes to Figure 20...................................................................... 14  
Changes to Figure 21...................................................................... 16  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
Rev. G | Page 2 of 20  
AD637  
SPECIFICATIONS1  
At 25°C, and 15 V dc unless otherwise noted.  
Table 1.  
AD637J/  
AD637A  
AD637K/  
AD637B  
AD637S  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
TRANSFER FUNCTION  
VOUT  
=
avg ×  
(
VIN 2  
)
CONVERSION ACCURACY  
Total Error,  
Internal Trim2  
(Figure 5)  
mV ±± of  
reading  
1
0.5  
0.5 0.2  
2.0 0.3  
1
6
0.5  
0.7  
TMIN to TMAX  
3.0 0.6  
mV ± ± of  
reading  
vs. Supply,  
+VIN = +300 mV  
30  
150  
30  
100  
150  
300  
0.1  
30  
150  
300  
0.25  
0.04  
0.05  
µV/V  
vs. Supply,  
−VIN = −300 mV  
100  
300  
100  
µV/V  
DC Reversal  
Error at 2 V  
0.25  
0.04  
0.05  
± of  
reading  
Nonlinearity 2 V  
Full Scale3  
0.02  
0.05  
± of FSR  
Nonlinearity 7 V  
Full Scale  
± of FSR  
Total Error,  
External Trim  
±0.5 ± 0.1  
±0.25 ± 0.05  
±0.5 ±  
0.1  
mV ± ± of  
reading  
ERROR VS.  
CREST FACTOR4  
Crest Factor 1 to 2  
Crest Factor = 3  
Specified Accuracy  
±0.1  
Specified Accuracy  
±0.1  
Specified Accuracy  
±0.1  
± of  
reading  
Crest Factor = 10  
±1.0  
25  
±1.0  
25  
±1.0  
25  
± of  
reading  
AVERAGING TIME  
CONSTANT  
ms/µF CAV  
INPUT  
CHARACTERISTICS  
Signal Range,  
±15 V Supply  
Continuous  
RMS Level  
0 to 7  
0 to 7  
0 to 7  
V rms  
V p-p  
Peak Transient  
Input  
±15  
±15  
±15  
Signal Range,  
±5 V Supply  
Continuous  
RMS Level  
0 to 4  
0 to 4  
0 to 4  
V rms  
V p-p  
Peak Transient  
Input  
±6  
±6  
±6  
Maximum Continuous  
Nondestructive  
Input Level (All  
Supply Voltages)  
±15  
±15  
±15  
V p-p  
Input Resistance  
6.4  
8
9.6  
6.4  
8
9.6  
6.4  
8
9.6  
kΩ  
Input Offset Voltage  
±0.5  
±0.2  
±0.5  
mV  
Rev. G | Page 3 of 20  
 
AD637  
AD637J/  
AD637A  
AD637K/  
AD637B  
AD637S  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
FREQUENCY RESPONSE5  
Bandwidth for 1±  
Additional Error  
(0.09 dB)  
VIN = 20 mV  
VIN = 200 mV  
VIN = 2 V  
11  
11  
11  
kHz  
kHz  
kHz  
66  
66  
66  
200  
200  
200  
±3 dB Bandwidth  
VIN = 20 mV  
VIN = 200 mV  
VIN = 2 V  
150  
1
150  
1
150  
1
kHz  
MHz  
MHz  
8
8
8
OUTPUT  
CHARACTERISTICS  
Offset Voltage  
1
0.089  
0.5  
0.056  
1
0.07  
mV  
mV/°C  
V
vs. Temperature  
±0.05  
13.5  
±0.04  
13.5  
±0.04  
13.5  
Voltage Swing,  
±15 V Supply,  
2 kΩ Load  
0 to  
12.0  
0 to 12.0  
0 to 2  
6
0 to  
12.0  
Voltage Swing,  
±3 V Supply,  
2 kΩ Load  
0 to  
2
2.2  
2.2  
0 to 2  
6
2.2  
V
Output Current  
6
mA  
mA  
Short-Circuit Current  
20  
20  
20  
Resistance,  
0.5  
0.5  
0.5  
Chip Select High  
Resistance,  
100  
100  
100  
kΩ  
Chip Select Low  
dB OUTPUT  
Error, VIN 7 mV to  
7 V rms, 0 dB =  
1 V rms  
±0.5  
−3  
±0.3  
−3  
±0.5  
−3  
dB  
Scale Factor  
mV/dB  
Scale Factor  
Temperature  
Coefficient  
± of  
Reading/°C  
+0.33  
−0.033  
20  
+0.33  
−0.033  
20  
+0.33  
−0.033  
20  
dB/°C  
µA  
IREF for 0 dB = 1 V rms  
IREF Range  
5
1
80  
100  
5
1
80  
100  
5
1
80  
100  
µA  
BUFFER AMPLIFIER  
Input Output  
−VS to (+VS − 2.5 V)  
−VS to (+VS − 2.5 V)  
−VS to (+VS − 2.5 V)  
V
Voltage Range  
Input Offset Voltage  
Input Current  
±0.8  
2
±0.5  
1
5
±0.8  
±2  
mV  
nA  
±2  
108  
10  
±2  
108  
±2  
108  
±10  
Input Resistance  
Output Current  
−0.13  
20  
5
−0.13  
20  
5
−0.13  
20  
5
mA  
mA  
MHz  
Short Circuit Current  
Small Signal  
Bandwidth  
Slew Rate6  
1
1
1
5
5
5
V/µs  
DENOMINATOR INPUT  
Input Range  
0 to 10  
0 to 10  
0 to 10  
V
Input Resistance  
Offset Voltage  
20  
25  
30  
20  
25  
30  
20  
25  
30  
kΩ  
mV  
±0.2  
±0.5  
±0.2  
±0.5  
±0.2  
±0.5  
Rev. G | Page 4 of 20  
AD637  
AD637J/  
AD637A  
AD637K/  
AD637B  
AD637S  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
CHIP SELECT (CS)  
RMS ON Level  
RMS OFF Level  
Open or 2.4 V < VC < +VS  
Open or 2.4 V < VC < +VS  
VC < 0.2 V  
Open or 2.4 V < VC < +VS  
VC <  
VC < 0.2 V  
0.2 V  
IOUT of Chip Select  
CS Low  
10  
0
10  
0
10  
0
µA  
µA  
µs  
CS High  
On Time Constant  
Off Time Constant  
POWER SUPPLY  
10 + ((25 kΩ) × CAV  
10 + ((25 kΩ) × CAV  
)
)
10 + ((25 kΩ) × CAV  
10 + ((25 kΩ) × CAV  
)
)
10 + ((25 kΩ) × CAV  
10 + ((25 kΩ) × CAV  
)
)
µs  
Operating Voltage  
Range  
3.0  
18  
3.0  
18  
3.0  
18  
V
Quiescent Current  
Standby Current  
2.2  
3
2.2  
3
2.2  
3
mA  
µA  
350  
450  
350  
450  
350  
450  
1 Specifications shown in bold are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and  
max specifications are guaranteed, although only those shown in boldface are tested on all production units.  
2 Accuracy specified 0 V rms to 7 V rms dc with AD637 connected as shown in Figure 5.  
3 Nonlinearity is defined as the maximum deviation from the straight line connecting the readings at 10 mV and 2 V.  
4 Error vs. crest factor is specified as additional error for 1 V rms.  
5 Input voltages are expressed in volts rms. Percent is in ± of reading.  
6 With external 2 kΩ pull-down resistor tied to −VS.  
Rev. G | Page 5 of 20  
 
AD637  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
ESD Rating  
Supply Voltage  
500 V  
±18 V dc  
108 mW  
Indefinite  
−65°C to +150°C  
300°C  
Internal Quiescent Power Dissipation  
Output Short-Circuit Duration  
Storage Temperature Range  
Lead Temperature Range (Soldering 10 secs)  
Rated Operating Temperature Range  
AD637J, AD637K  
0°C to 70°C  
AD637A, AD637B  
AD637S, 5962-8963701CA  
−40°C to +85°C  
−55°C to +125°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degrada-  
tion or loss of functionality.  
Rev. G | Page 6 of 20  
 
AD637  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
BUFF OUT  
BUFF IN  
NC  
BUFF IN  
NC  
BUFF OUT  
V
V
IN  
IN  
NC  
COMMON  
OUTPUT OFFSET  
CS  
NC  
COMMON  
OUTPUT OFFSET  
CS  
AD637  
AD637  
+V  
S
+V  
S
TOP VIEW  
TOP VIEW  
(Not to Scale)  
–V  
S
–V  
S
(Not to Scale)  
DEN INPUT  
dB OUTPUT  
RMS OUT  
RMS OUT  
DEN INPUT  
dB OUTPUT  
NC  
8
C
C
AV  
AV  
NC  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 2. 14-Lead SBDIP/CERDIP Pin Configuration  
Figure 3. 16-Lead SOIC_W Pin Configuration  
Table 3. 14-Lead SBDIP/CERDIP Pin Function Descriptions  
Table 4. 16-Lead SOIC_W Pin Function Descriptions  
Pin No. Mnemonic  
Description  
Pin No.  
Mnemonic  
Description  
1
2, 12  
3
BUFF IN  
NC  
COMMON  
Buffer Input  
No Connection  
Analog Common  
1
BUFF IN  
Buffer Input  
No Connection  
Analog Common  
2, 8, 9, 14 NC  
3
COMMON  
4
OUTPUT OFFSET Output Offset  
4
OUTPUT OFFSET Output Offset  
5
CS  
Chip Select  
5
CS  
Chip Select  
6
7
8
9
10  
11  
13  
14  
DEN INPUT  
dB OUTPUT  
CAV  
RMS OUT  
−VS  
+VS  
VIN  
BUFF OUT  
Denominator Input  
dB Output  
Averaging Capacitor Connection  
RMS Output  
Negative Supply Rail  
Positive Supply Rail  
Signal Input  
6
7
DEN INPUT  
dB OUTPUT  
CAV  
RMS OUT  
−VS  
+VS  
VIN  
BUFF OUT  
Denominator Input  
dB Output  
Averaging Capacitor Connection  
RMS Output  
Negative Supply Rail  
Positive Supply Rail  
Signal Input  
10  
11  
12  
13  
15  
16  
Buffer Output  
Buffer Output  
Rev. G | Page 7 of 20  
 
AD637  
FUNCTIONAL DESCRIPTION  
FILTER/AMPLIFIER  
8
11  
9
CAV  
14  
BUFF OUT  
ONE QUADRANT  
SQUARER/DIVIDER  
24k  
+V  
S
1
BUFF IN  
BUFFER  
AMPLIFIER  
A5  
RMS  
OUT  
A4  
I
4
dB  
7
3
I
OUT  
1
24kΩ  
COM  
Q4  
Q1  
ABSOLUTE VALUE VOLTAGE –  
CURRENT CONVERTER  
CS  
5
6
4
Q5  
BIAS  
DEN  
INPUT  
I
24kΩ  
Q2  
Q3  
A3  
3
6kΩ  
6kΩ  
OUTPUT  
OFFSET  
A2  
12kΩ  
125Ω  
AD637  
V
13  
IN  
A1  
10 –V  
S
Figure 4. Simplified Schematic  
The AD637 embodies an implicit solution of the rms equation  
that overcomes the inherent limitations of straightforward rms  
computation. The actual computation performed by the AD637  
follows the equation  
If the averaging capacitor is omitted, the AD637 computes the  
absolute value of the input signal. A nominal 5 pF capacitor  
should be used to ensure stability. The circuit operates  
identically to that of the rms configuration except that I3 is  
now equal to I4, giving  
V
2
ΙΝ  
V rms = Avg  
I12  
V rms  
I4 =  
I4  
Figure 4 is a simplified schematic of the AD637, subdivided into  
four major sections: absolute value circuit (active rectifier),  
squarer/divider, filter circuit, and buffer amplifier. The input  
voltage VIN, which can be ac or dc, is converted to a unipolar  
current I1 by the active rectifier A1, A2. I1 drives one input of  
the squarer/divider, which has the transfer function  
I4 = I1  
The denominator current can also be supplied externally  
by providing a reference voltage, VREF, to Pin 6. The circuit  
operates identically to the rms case except that I3 is now  
proportional to VREF. Therefore,  
2
I1  
I12  
I3  
I4 =  
I4 = Avg  
I3  
The output current of the squarer/divider I4 drives A4, which  
forms a low-pass filter with the external averaging capacitor.  
If the RC time constant of the filter is much greater than the  
longest period of the input signal, A4s output is proportional to  
the average of I4. The output of this filter amplifier is used by A3  
to provide the denominator current I3, which equals Avg I4 and  
is returned to the squarer/divider to complete the implicit rms  
computation  
and  
2
VIN  
VO =  
VDEN  
This is the mean square of the input signal.  
2
I1  
I4  
I = Avg  
= I rms  
1
4
and  
VOUT = VIN rms  
Rev. G | Page 8 of 20  
 
 
AD637  
20  
15  
10  
5
STANDARD CONNECTION  
The AD637 is simple to connect for a majority of rms  
measurements. In the standard rms connection shown in  
Figure 5, only a single external capacitor is required to set the  
averaging time constant. In this configuration, the AD637  
computes the true rms of any input signal. An averaging error,  
the magnitude of which is dependent on the value of the  
averaging capacitor, is present at low frequencies. For example,  
if the filter capacitor, CAV, is 4 µF, the error is 0.1% at 10 Hz and  
increases to 1% at 3 Hz. To measure ac signals, the AD637 can  
be ac-coupled through the addition of a nonpolar capacitor in  
series with the input, as shown in Figure 5.  
0
0
± 3  
± 5  
± 10  
± 15  
± 18  
SUPPLY VOLTAGE – DUAL SUPPLY (V)  
AD637  
1
BUF IN  
BUFFER  
OUT  
14  
NC  
Figure 6. AD637 Maximum VOUT vs. Supply Voltage  
2
3
NC  
V
IN  
V
IN  
13  
ABSOLUTE  
VALUE  
CHIP SELECT  
COM  
NC 12  
11  
+V  
S
The AD637 includes a chip select feature that allows the user to  
decrease the quiescent current of the device from 2.2 mA to  
350 µA. This is done by driving the CS, Pin 5, to below 0.2 V dc.  
Under these conditions, the output goes into a high impedance  
state. In addition to lowering power consumption, this feature  
permits bussing the outputs of a number of AD637s to form a  
wide bandwidth rms multiplexer. If the chip select is not being  
used, Pin 5 should be tied high.  
(OPTIONAL)  
SQUARER/  
DIVIDER  
OUT  
OFF  
4
5
6
7
+V  
BIAS  
+V  
S
S
4.7k  
CS  
10  
9
–V  
–V  
S
S
25kΩ  
DEN  
IN  
2
= V  
IN  
V
OUT  
25kΩ  
C
+
8
AV  
C
DB OUT  
AV  
OPTIONAL TRIMS FOR HIGH ACCURACY  
The AD637 includes provisions for trimming out output offset  
and scale factor errors resulting in significant reduction in the  
maximum total error, as shown in Figure 7. The residual error is  
due to a nontrimmable input offset in the absolute value circuit  
and the irreducible nonlinearity of the device.  
Figure 5. Standard RMS Connection  
The performance of the AD637 is tolerant of minor variations  
in the power supply voltages; however, if the supplies used  
exhibit a considerable amount of high frequency ripple, it is  
advisable to bypass both supplies to ground through a 0.1 µF  
ceramic disc capacitor placed as close to the device as possible.  
Referring to Figure 8, the trimming process follows:  
The output signal range of the AD637 is a function of the  
supply voltages, as shown in Figure 6. The output signal can be  
used buffered or nonbuffered, depending on the characteristics  
of the load. If no buffer is needed, tie the buffer input (Pin 1) to  
common. The output of the AD637 is capable of driving 5mA  
into a 2 kΩ load without degrading the accuracy of the device.  
Offset trim: Ground the input signal, VIN, and adjust R1  
to give 0 V output from Pin 9. Alternatively, R1 can be  
adjusted to give the correct output with the lowest expected  
value of VIN.  
Scale factor trim: Resistor R4 is inserted in series with  
the input to lower the range of the scale factor. Connect  
the desired full-scale input to VIN, using either a dc or a  
calibrated ac signal, and trim R3 to give the correct output  
at Pin 9, that is, 1 V dc should give l.000 V dc output. Of  
course, a 2 V p-p sine wave should give 0.707 V dc output.  
Remaining errors are due to the nonlinearity.  
Rev. G | Page 9 of 20  
 
 
 
AD637  
5.0  
E
O
IDEAL  
E
AD637K MAX  
O
DC ERROR = AVERAGE OF OUTPUT – IDEAL  
2.5  
0
INTERNAL TRIM  
AD637K  
AVERAGE ERROR  
DOUBLE-FREQUENCY  
RIPPLE  
EXTERNAL TRIM  
TIME  
Figure 9. Typical Output Waveform for a Sinusoidal Input  
2.5  
This ripple can add a significant amount of uncertainty to the  
accuracy of the measurement being made. The uncertainty can  
be significantly reduced through the use of a post filtering  
network or by increasing the value of the averaging capacitor.  
AD637K: 0.5mV ± 0.2%  
0.25mV ± 0.05%  
EXTERNAL  
5.0  
0
0.5  
1.0  
INPUT LEVEL (V)  
1.5  
2.0  
The dc error appears as a frequency dependent offset at the  
output of the AD637 and follows the equation  
Figure 7. Maximum Total Error vs.  
Input Level AD637K Internal and External Trims  
1
in% of reading  
0.16 + 6.4 τ2 f 2  
AD637  
1
BUF IN  
BUFFER  
OUT  
14  
NC  
R4  
Since the averaging time constant, set by CAV, directly sets the  
time that the rms converter holds the input signal during  
computation, the magnitude of the dc error is determined only  
by CAV and is not affected by post filtering.  
2
3
NC  
V
147IN  
V
IN 13  
ABSOLUTE  
VALUE  
OUTPUT  
OFFSET  
TRIM  
COM  
NC 12  
11  
+V  
S
R2  
1MΩ  
SQUARER/  
DIVIDER  
OUT  
OFF  
4
5
6
7
R1  
50kΩ  
+V  
BIAS  
+V  
S
S
100  
4.7kΩ  
–V  
CS  
10  
S
+V  
–V  
–V  
S
S
S
25kΩ  
DEN  
IN  
2
= V  
IN  
V
OUT  
25kΩ  
9
C
+
8
AV  
C
DB OUT  
AV  
10  
SCALE FACTOR TRIM  
PEAK RIPPLE  
R3  
1kΩ  
1.0  
Figure 8. Optional External Gain and Offset Trims  
DC ERROR  
CHOOSING THE AVERAGING TIME CONSTANT  
The AD637 computes the true rms value of both dc and ac  
0.1  
input signals. At dc, the output tracks the absolute value of the  
input exactly; with ac signals, the AD637s output approaches  
the true rms value of the input. The deviation from the ideal  
rms value is due to an averaging error. The averaging error is  
comprised of an ac and dc component. Both components are  
functions of input signal frequency f and the averaging time  
constant τ (τ: 25 ms/µF of averaging capacitance). Figure 9  
shows that the averaging error is defined as the peak value of  
the ac component, ripple, and the value of the dc error.  
10  
100  
1k  
10k  
SINEWAVE INPUT FREQUENCY (Hz)  
Figure 10. Comparison of Percent DC Error to the  
Percent Peak Ripple over Frequency Using the  
AD637 in the Standard RMS Connection with a 1 × µF CAV  
The ac ripple component of averaging error is greatly reduced  
by increasing the value of the averaging capacitor. There are two  
major disadvantages to this: the value of the averaging capacitor  
becomes extremely large and the settling time of the AD637  
increases in direct proportion to the value of the averaging  
capacitor (Ts = 115 ms/µF of averaging capacitance). A  
preferable method of reducing the ripple is through the use of  
the post filter network, as shown in Figure 11. This network can  
be used in either a one-pole or two-pole configuration. For  
most applications, the single pole filter gives the best overall  
compromise between ripple and settling time.  
The peak value of the ac ripple component of the averaging  
error is defined approximately by the relationship  
50  
6.3 τf  
in% of reading where  
(
τ >1 f  
)
Rev. G | Page 10 of 20  
 
 
AD637  
100  
10  
100  
AD637  
1
BUF IN  
BUFFER  
OUT  
14 RMS OUT  
13  
0
.
0
1
%
E
2
3
NC  
V
R
IN  
ABSOLUTE  
0
R
V
.
O
IN  
1
10  
%
VALUE  
R
E
+
R
COM  
R
C3  
1
%
NC 12  
11  
O
R
E
SQUARER/  
DIVIDER  
R
OUT  
OFF  
R
O
1
4
5
6
7
0
R
+V  
%
BIAS  
+V  
–V  
S
S
1.0  
1.0  
0.1  
0.01  
E
R
R
O
+V  
S
4.7k  
CS  
10  
R
–V  
S
S
25kΩ  
DEN  
IN  
25kΩ  
9
0.1  
C
+
8
AV  
C
DB OUT  
AV  
*%dc ERROR + %RIPPLE (PEAK)  
0.01  
1
10  
100  
1k  
10k  
100k  
INPUT FREQUENCY (Hz)  
24kΩ  
FOR A1 POLE  
FILTER SHORT Rx  
AND REMOVE C3  
24kΩ  
+
Figure 12. Values for CAV, and 1% Settling Time for Stated % of Reading  
Averaging Error* Accuracy Includes 2% Component Tolerance  
(see * in Figure)  
C2  
100  
100  
10  
1
Figure 11. Two-Pole Sallen-Key Filter  
Figure 12 shows values of CAV and the corresponding averaging  
error as a function of sine wave frequency for the standard rms  
connection. The 1% settling time is shown on the right side of  
Figure 12.  
10  
0
.
0
1
Figure 13 shows the relationship between the averaging error,  
signal frequency settling time, and averaging capacitor value.  
Figure 13 is drawn for filter capacitor values of 3.3× the  
averaging capacitor value. This ratio sets the magnitude of the  
ac and dc errors equal at 50 Hz. As an example, by using a 1 µF  
averaging capacitor and a 3.3 µF filter capacitor, the ripple for a  
60 Hz input signal is reduced from 5.3% of the reading using  
the averaging capacitor alone to 0.15% using the single-pole  
filter. This gives a factor of 30 reduction in ripple and yet the  
settling time only increases by a factor of 3. The values of CAV  
and C2, the filter capacitors, can be calculated for the desired  
value of averaging error and settling time by using Figure 13.  
%
0
1
.
1
E
%
R
R
1
E
%
O
R
R
R
E
5
O
R
%
R
R
E
O
R
R
R
O
0.1  
0.01  
0.1  
R
*%dc ERROR + %RIPPLE (PEAK)  
ACCURACY ±20% DUE TO  
COMPONENT TOLERANCE  
0.01  
100k  
1
10  
100  
1k  
10k  
INPUT FREQUENCY (Hz)  
Figure 13. Values of CAV, C2, and 1% Settling Time for Stated % of Reading  
Averaging Error* for 1-Pole Post Filter (see * in Figure)  
100  
10  
1
100  
The symmetry of the input signal also has an effect on the  
magnitude of the averaging error. Table 5 gives the practical  
component values for various types of 60 Hz input signals.  
These capacitor values can be directly scaled for frequencies  
other than 60 Hz; that is, for 30 Hz these values are doubled, for  
120 Hz they are halved.  
10  
0
.
0
1
%
1
0
.
1
E
R
%
R
1
R
E
%
O
R
R
E
R
5
R
O
%
R
E
For applications that are extremely sensitive to ripple, the two-  
pole configuration is suggested. This configuration minimizes  
capacitor values and the settling time while maximizing  
performance.  
O
R
R
R
O
0.1  
0.01  
0.1  
R
*%dc ERROR + %RIPPLE (PEAK)  
ACCURACY ±20% DUE TO  
COMPONENT TOLERANCE  
0.01  
100k  
1
10  
100  
1k  
10k  
Figure 14 can be used to determine the required value of CAV,  
C2, and C3 for the desired level of ripple and settling time.  
INPUT FREQUENCY (Hz)  
Figure 14. Values of CAV, C2, and C3 and 1% Settling Time for Stated % of  
Reading Averaging Error* 2-Pole Sallen-Key Filter (see * in Figure)  
Rev. G | Page 11 of 20  
 
 
 
AD637  
Table 5. Practical Values of CAV and C2 for Various Input Waveforms  
Recommended CAV and C2 Values  
for 1% Averaging Error @ 60 Hz with T = 16.6 ms  
Absolute Value  
Input Waveform  
and Period  
Circuit Waveform  
and Period  
Minimum  
R × CAV Time Constant  
1% Settling  
Time  
Recommended  
Standard Value CAV  
Recommended  
Standard Value C2  
1/2T  
T
1/2T  
0.47 µF  
0.82 µF  
1.5 µF  
2.7 µF  
181 ms  
A
0V  
Symmetrical Sine Wave  
T
T
T
325 ms  
B
0V  
Sine Wave with dc Offset  
T
T
10 (T − T2)  
6.8 µF  
5.6 µF  
22 µF  
18 µF  
2.67 sec  
2.17 sec  
C
D
T
2
T
2
0V  
Pulse Train Waveform  
T
T
10 (T − 2T2)  
T
2
T
2
0V  
FREQUENCY RESPONSE  
The frequency response of the AD637 at various signal levels is  
shown in Figure 15. The dashed lines show the upper frequency  
limits for 1%, 10%, and 3 dB of additional error. For example,  
note that for 1% additional error with a 2 V rms input, the  
highest frequency allowable is 200 kHz. A 200 mV signal can be  
measured with 1% error at signal frequencies up to 100 kHz.  
10  
7V RMS INPUT  
2V RMS INPUT  
1V RMS INPUT  
1
0.1  
1%  
10%  
±3dB  
100mV RMS INPUT  
100mV RMS INPUT  
To take full advantage of the wide bandwidth of the AD637,  
care must be taken in the selection of the input buffer amplifier.  
To ensure that the input signal is accurately presented to the  
converter, the input buffer must have a −3 dB bandwidth that is  
wider than that of the AD637. Note the importance of slew rate  
in this application. For example, the minimum slew rate  
required for a 1 V rms, 5 MHz, sine wave input signal is  
44 V/µs. The user is cautioned that this is the minimum rising  
or falling slew rate and that care must be exercised in the  
selection of the buffer amplifier, since some amplifiers exhibit a  
two-to-one difference between rising and falling slew rates. The  
AD845 is recommended as a precision input buffer.  
0.01  
1k  
10k  
100k  
1M  
10M  
INPUT FREQUENCY (Hz)  
Figure 15. Frequency Response  
AC MEASUREMENT ACCURACY AND CREST FACTOR  
Crest factor is often overlooked in determining the accuracy of  
an ac measurement. Crest factor is defined as the ratio of the peak  
signal amplitude to the rms value of the signal (CF = Vp/V rms).  
Most common waveforms, such as sine and triangle waves, have  
relatively low crest factors (≤2). Waveforms that resemble low  
duty cycle pulse trains, such as those occurring in switching  
power supplies and SCR circuits, have high crest factors. For  
example, a rectangular pulse train with a 1% duty cycle has a  
crest factor of 10 (CF = 1 η ).  
Rev. G | Page 12 of 20  
 
 
AD637  
100  
T
µs  
T
η
= DUTY CYCLE =  
2.0  
1.8  
1.6  
Vp  
η
e0  
CF = 1/  
0
eIN(RMS) = 1 V RMS  
100µF  
10  
1.4  
1.2  
C
= 22µF  
AV  
CF = 10  
CF = 7  
1.0  
0.8  
1
CF = 10  
0.6  
0.4  
0.2  
0
CF = 3  
0.1  
0.5  
1.0  
(V rms)  
1.5  
2.0  
0
V
IN  
CF = 3  
Figure 18. Error vs. RMS Input Level for Three Common Crest Factors  
0.01  
1
10  
PULSE WIDTH (  
100  
1000  
CONNECTION FOR DB OUTPUT  
µ
s)  
Another feature of the AD637 is the logarithmic, or decibel,  
output. The internal circuit that computes dB works well over a  
60 dB range. Figure 19 shows the dB measurement connection.  
The user selects the 0 dB level by setting R1 for the proper 0 dB  
reference current, which is set to exactly cancel the log output  
current from the squarer/divider circuit at the desired 0 dB  
point. The external op amp is used to provide a more  
convenient scale and to allow compensation of the +0.33%/°C  
temperature drift of the dB circuit. The special TC resistor R3 is  
available from Precision Resistor Inc., Largo, Fla (Model PT146).  
Figure 16. AD637 Error vs. Pulse Width Rectangular Pulse  
Figure 17 is a curve of additional reading error for the AD637  
for a 1 V rms input signal with crest factors from 1 to 11. A  
rectangular pulse train (pulse width 100 µs) was used for this  
test because it is the worst-case waveform for rms measurement  
(all the energy is contained in the peaks). The duty cycle and  
peak amplitude were varied to produce crest factors from l to 10  
while maintaining a constant 1 V rms input amplitude.  
1.5  
1.0  
0.5  
0
–0.5  
POSITIVE INPUT PULSE  
C
= 22µF  
AV  
–1.0  
–1.5  
3
4
5
6
7
1
2
8
9
10  
11  
CREST FACTOR  
Figure 17. Additional Error vs. Crest Factor  
Rev. G | Page 13 of 20  
 
 
AD637  
R2  
5k  
dB SCALE  
FACTOR  
ADJUST  
33.2k  
SIGNAL  
INPUT  
+V  
S
BUFFER  
R3  
60.4  
BUFFER  
OUT 14  
AD637  
BUF IN  
1
2
3
4
5
6
7
*1kΩ  
AD707JN  
V
IN  
13  
ABSOLUTE  
VALUE  
NC  
COMPENSATED  
dB OUTPUT  
+ 100mV/dB  
COM  
12  
11  
NC  
–V  
S
BIAS  
SECTION  
OUT  
OFF  
SQUARER/DIVIDER  
+V  
+V  
–V  
S
S
S
25kΩ  
4.7kΩ  
CS  
10  
9
+V  
S
–V  
S
DEN  
IN  
V
25k  
OUT  
+
1µF  
dB  
8
FILTER  
C
AV  
10kΩ  
+V  
S
*1k  
+ 3500ppm  
R1  
500k  
TC RESISTOR TEL LAB Q81  
PRECISION RESISTOR PT146  
OR EQUIVALENT  
+2.5 VOLTS  
AD508J  
NC = NO CONNECT  
0dB ADJUST  
Figure 19. dB Connection  
+V  
1µF  
S
NOTE: VALUES CHOSEN TO GIVE 0.1%  
AVERAGING ERROR @ 1Hz  
3.3M3.3M  
1µF  
AD548JN  
BUFFER  
BUFFER  
OUT  
AD637  
FILTERED  
V RMS OUTPUT  
14  
BUF IN  
1
2
3
V
IN 13  
–V  
S
SIGNAL  
INPUT  
ABSOLUTE  
VALUE  
NC  
6.8MΩ  
COM  
12  
11  
10  
NC  
+V  
S
BIAS  
SECTION  
OUT  
OFF  
1000pF  
1MΩ  
OUTPUT  
OFFSET  
ADJUST  
SQUARER/DIVIDER  
4
5
+V  
+V  
S
50kΩ  
S
25kΩ  
+V  
CS  
S
–V  
S
–V  
S
–V  
S
4.7kΩ  
V
2
25kΩ  
OUT  
9
+
V
IN  
DEN  
IN  
V rms  
6
100µF  
C
8
AV  
FILTER  
7
dB  
1%  
499kΩ  
R
C
3.3µF  
AV1  
NC = NO CONNECT  
Figure 20. AD637 as a Low Frequency RMS Converter  
Rev. G | Page 14 of 20  
 
 
AD637  
If the frequency of interest is below 1 Hz, or if the value of  
dB CALIBRATION  
the averaging capacitor is still too large, the 20:1 ratio can be  
increased. This is accomplished by increasing the value of R. If  
this is done, it is suggested that a low input current, low offset  
voltage amplifier, such as the AD548, be used instead of the  
internal buffer amplifier. This is necessary to minimize the  
offset error introduced by the combination of amplifier input  
currents and the larger resistance.  
Refer to Figure 19:  
Set VIN = 1.00 V dc or 1.00 V rms  
Adjust R1 for 0 dB out = 0.00 V  
Set VIN = 0.1 V dc or 0.10 V rms  
Adjust R2 for dB out = −2.00 V  
Any other dB reference can be used by setting VIN and R1  
accordingly.  
VECTOR SUMMATION  
Vector summation can be accomplished through the use of two  
AD637s, as shown in Figure 21. Here the averaging capacitors  
are omitted (nominal 100 pF capacitors are used to ensure  
stability of the filter amplifier), and the outputs are summed as  
shown. The output of the circuit is  
LOW FREQUENCY MEASUREMENTS  
If the frequencies of the signals to be measured are below  
10 Hz, the value of the averaging capacitor required to deliver  
even 1% averaging error in the standard rms connection  
becomes extremely large. Figure 20 shows an alternative  
method of obtaining low frequency rms measurements. The  
averaging time constant is determined by the product of R and  
CAV1, in this circuit 0.5 s/µF of CAV. This circuit permits a 20:1  
reduction in the value of the averaging capacitor, permitting the  
use of high quality tantalum capacitors. It is suggested that the  
two-pole, Sallen-Key filter shown in Figure 20 be used to obtain  
a low ripple level and minimize the value of the averaging  
capacitor.  
2
2
VO = VX +VY  
This concept can be expanded to include additional terms by  
feeding the signal from Pin 9 of each additional AD637 through  
a 10 kΩ resistor to the summing junction of the AD711 and  
tying all of the denominator inputs (Pin 6) together.  
If CAV is added to IC1 in this configuration, the output is  
2
2
VX + VY  
If the averaging capacitor is included on both IC1 and IC2, the  
output is  
2
VX2 +VY  
This circuit has a dynamic range of 10 V to 10 mV and is  
limited only by the 0.5 mV offset voltage of the AD637. The  
useful bandwidth is 100 kHz.  
Rev. G | Page 15 of 20  
 
AD637  
EXPANDABLE  
BUFFER  
AD637  
BUFFER  
OUT  
IC1  
BUF IN  
14  
13  
1
V IN  
X
ABSOLUTE  
VALUE  
2
3
NC  
12  
11  
COM  
NC  
BIAS  
OUT  
OFF  
SECTION  
SQUARER/DIVIDER  
25k  
4
5
6
+V  
+V  
S
S
S
+V  
10  
S
CS  
–V  
–V  
S
4.7k  
V
25k  
OUT  
9
DEN  
IN  
100pF  
8
5pF  
C
FILTER  
AV  
7
dB  
10k  
10k  
BUFFER  
BUFFER  
OUT  
AD637  
IC2  
BUF IN  
1
14  
AD711K  
V IN  
Y
2
3
4
5
6
NC  
ABSOLUTE  
VALUE  
13  
COM  
NC 12  
10k  
20k  
BIAS  
SECTION  
OUT  
OFF  
11  
10  
SQUARER/DIVIDER  
25k  
+V  
–V  
+V  
S
S
S
+V  
S
CS  
–V  
S
4.7kΩ  
DEN  
IN  
V
25k  
OUT  
9
8
100pF  
dB  
FILTER  
7
2
2
V
=
V
+ V  
X Y  
OUT  
Figure 21. Vector Sum Configuration  
Rev. G | Page 16 of 20  
AD637  
OUTLINE DIMENSIONS  
0.005 (0.13) MIN  
0.080 (2.03) MAX  
8
14  
0.310 (7.87)  
1
0.220 (5.59)  
7
PIN 1  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.765 (19.43) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 22. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
(D-14)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49) MAX  
8
0.005 (0.13) MIN  
14  
0.310 (7.87)  
0.220 (5.59)  
1
7
PIN 1  
0.320 (8.13)  
0.290 (7.37)  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 23. 14-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-14)  
Dimensions shown in inches and (millimeters)  
Rev. G | Page 17 of 20  
 
AD637  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.27 (0.0500)  
BSC  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
× 45°  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 24. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
−55°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
Package Description  
14-Lead CERDIP  
14-Lead CERDIP  
16-Lead SOIC_W  
14-Lead CERDIP  
16-Lead SOIC_W  
14-Lead SBDIP  
Package Option  
Q-14  
Q-14  
RW-16  
Q-14  
RW-16  
D-14  
5962-8963701CA1  
AD637AQ  
AD637AR  
AD637BQ  
AD637BR  
AD637JD  
AD637JQ  
AD637JR  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
14-Lead CERDIP  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
14-Lead SBDIP  
Q-14  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
D-14  
AD637JR-REEL  
AD637JR-REEL7  
AD637JRZ2  
AD637JRZ-R72  
AD637JRZ-RL2  
AD637KD  
AD637KQ  
AD637KR  
AD637SD  
AD637SD/883B  
AD637SQ/883B  
0°C to 70°C  
0°C to 70°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
14-Lead CERDIP  
16-Lead SOIC_W  
14-Lead SBDIP  
14-Lead SBDIP  
14-Lead CERDIP  
Q-14  
RW-16  
D-14  
D-14  
Q-14  
1 A standard microcircuit drawing is available.  
2 Z = Pb-free part.  
Rev. G | Page 18 of 20  
 
 
 
 
AD637  
NOTES  
Rev. G | Page 19 of 20  
AD637  
NOTES  
©2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00788–0–4/05(G)  
Rev. G | Page 20 of 20  

相关型号:

5962-89638012X

Current-Mode SMPS Controller
ETC

5962-8963801EX

Current-Mode SMPS Controller
ETC

5962-89638022X

Current-Mode SMPS Controller
ETC

5962-8963802EX

Current-Mode SMPS Controller
ETC

5962-8963901VX

Voltage-Feedback Operational Amplifier
ETC

5962-89640012A

Wideband, Fast Settling Op Amp
ADI

5962-89640012X

Voltage-Feedback Operational Amplifier
ETC

5962-8964001CA

Wideband, Fast Settling Op Amp
ADI

5962-8964001CX

Voltage-Feedback Operational Amplifier
ETC

5962-89641012A

Wideband, Unity-Gain Stable, Fast Settling Op Amp
ADI

5962-89641012X

Voltage-Feedback Operational Amplifier
ETC

5962-8964101CA

Operational Amplifier, 1 Func, 5500uV Offset-Max, BIPolar, CDIP14, HERMETIC SEALED, CERDIP-14
ROCHESTER