5962-8876403XA [ADI]

8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, CERAMIC, DIP-24;
5962-8876403XA
型号: 5962-8876403XA
厂家: ADI    ADI
描述:

8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, CERAMIC, DIP-24

CD 转换器
文件: 总16页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LC2MOS High Speed  
4- and 8-Channel 8-Bit ADCs  
a
AD7824/AD7828  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
4 or 8 Analog Input Channels  
Built-In Track-and-Hold Function  
10 kHz Signal Handling on Each Channel  
Fast Microprocessor Interface  
Single 5 V Supply  
Low Power: 50 mW  
Fast Conversion Rate: 2.5 s/Channel  
Tight Error Specification: 1/2 LSB  
V
(+)  
(–)  
DB7  
DB6  
DB5  
DB4  
4-BIT  
FLASH  
ADC  
REF  
V
REF  
(4MSB)  
AIN1  
THREE-  
STATE  
DRIVERS  
4-BIT  
DAC  
AIN4  
MUX*  
V
(+)  
REF  
16  
DB3  
DB2  
DB1  
DB0  
4-BIT  
FLASH  
ADC  
AIN8  
(4LSB)  
ADDRESS  
LATCH  
DECODE  
TIMING AND CONTROL  
CIRCUITRY  
INT  
RD  
RDY  
CS  
A0 A1 A2**  
*AD7824 – 4-CHANNEL MUX  
**AD7828 – 8-CHANNEL MUX  
A2 – AD7828 ONLY  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD7824 and AD7828 are high speed, multichannel, 8-bit  
ADCs with a choice of four (AD7824) or eight (AD7828) multi-  
plexed analog inputs. A half-flash conversion technique gives a fast  
conversion rate of 2.5 µs per channel, and the parts have a built-in  
track-and-hold function capable of digitizing full-scale signals of  
10 kHz (157 mV/µs slew rate) on all channels. The AD7824 and  
AD7828 operate from a single 5 V supply and have an analog input  
range of 0 V to 5 V, using an external 5 V reference.  
1. 4- or 8-channel input multiplexer gives cost effective,  
space-saving multichannel ADC system.  
2. Fast conversion rate of 2.5 µs/channel features a per-channel  
sampling frequency of 100 kHz for the AD7824 or 50 kHz  
for the AD7828.  
3. Built-in track-and-hold function allows handling of four or  
eight channels up to 10 kHz bandwidth (157 mV/µs slew rate).  
4. Tight total unadjusted error spec and channel-to-channel  
matching eliminate the need for user trims.  
Microprocessor interfacing of the parts is simple, using standard  
Chip Select (CS) and Read (RD) signals to initiate the conversion  
and read the data from the three-state data outputs. The half-flash  
conversion technique means that there is no need to generate a  
clock signal for the ADC. The AD7824 and AD7828 can be  
interfaced easily to most popular microprocessors.  
5. Single 5 V supply simplifies system power requirements.  
6. Fast, easy-to-use digital interface allows connection to most  
popular microprocessors with minimal external components.  
No clock signal is required for the ADC.  
The AD7824 and AD7828 are fabricated in an advanced, all  
ion-implanted, linear compatible CMOS process (LC2MOS) and  
have low power dissipation of 40 mW (typ). The AD7824 is  
available in a 0.3" wide, 24-lead “skinny” DIP, while the AD7828  
is available in a 0.6" wide, 28-lead DIP and in 28-terminal surface-  
mount packages.  
REV. F  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(V = 5 V, VREF (+) = 5 V, VREF (–) = GND = O V, unless otherwise  
noted. All specifications TMIN to TMAX, unless otherwise noted. Specifications apply to Mode 0.)  
AD7824/AD7828–SPECIFICATIONS  
DD  
Parameter  
K Version1 L Version B, T Versions  
C, U Versions Unit  
Conditions/Comments  
ACCURACY  
Resolution  
8
8
8
8
8
8
8
8
Bits  
LSB max  
Total Unadjusted Error2  
Minimum Resolution for which  
No Missing Codes Are Guaranteed  
Channel-to-Channel Mismatch  
1
1/2  
1/4  
1
1/2  
1/4  
Bits  
LSB max  
1/4  
1/4  
REFERENCE INPUT  
Input Resistance  
1.0/4.0  
VREF (–)/  
VDD  
1.0/4.0  
VREF (–)/  
VDD  
1.0/4.0  
VREF (–)/  
VDD  
1.0/4.0  
VREF (–)/  
VDD  
kmin/kmax  
V min/V max  
V
REF (+) Input Voltage Range  
VREF (–) Input Voltage Range  
GND/  
VREF (+)  
GND/  
VREF (+)  
GND/  
VREF (+)  
GND/  
VREF (+)  
V min/V max  
V min/V max  
ANALOG INPUT  
Input Voltage Range  
VREF (–)/  
VREF (–)/  
VREF (+)  
3
VREF (–)/  
VREF (+)  
3
VREF (–)/  
VREF (+)  
3
V
REF (+)  
Input Leakage Current  
Input Capacitance3  
3
45  
µA max  
pF typ  
Analog Input Any Channel  
0 V to 5 V  
45  
45  
45  
LOGIC INPUTS  
RD, CS, A0, A1, and A2  
VINH  
VINL  
2.4  
0.8  
1
–1  
8
2.4  
0.8  
1
–1  
8
2.4  
0.8  
1
–1  
8
2.4  
0.8  
1
–1  
8
V min  
V max  
µA max  
µA max  
pF max  
IINH  
IINL  
Input Capacitance3  
Typically 5 pF  
LOGIC OUTPUTS  
DB0–DB7 and INT  
VOH  
4.0  
0.4  
3
4.0  
0.4  
3
4.0  
0.4  
3
4.0  
0.4  
3
V min  
ISOURCE = 360 µA  
ISINK = 1.6 mA  
Floating State Leakage  
Typically 5 pF  
VOL  
V max  
µA max  
pF max  
IOUT (DB0–DB7)  
Output Capacitance3  
RDY  
8
8
8
8
4
VOL  
0.4  
3
8
0.4  
3
8
0.4  
3
8
0.4  
3
8
V max  
µA max  
pF max  
ISINK = 2.6 mA  
Floating State Leakage  
Typically 5 pF  
IOUT  
Output Capacitance  
SLEW RATE, TRACKING3  
0.7  
0.157  
0.7  
0.157  
0.7  
0.157  
0.7  
0.157  
V/µs typ  
V/µs max  
POWER SUPPLY  
VDD  
5
5
5
5
V
5% for Specified  
Performance  
CS = RD = 2.4 V  
5
IDD  
16  
50  
80  
1/4  
16  
50  
80  
1/4  
20  
50  
100  
1/4  
20  
50  
100  
1/4  
mA max  
mW typ  
mW max  
LSB max  
Power Dissipation  
Power Supply Sensitivity  
1/16 LSB typ  
VDD = 5 V 5%  
NOTES  
1Temperature ranges are as follows: K, L Versions: 0°C to 70°C  
B, C Versions: –40°C to +85°C  
T, U Versions: –55°C to +125°C  
2Total Unadjusted Error includes offset, full-scale and linearity errors.  
3Sample tested at 25°C by Product Assurance to ensure compliance.  
4RDY is an open-drain output.  
5See Typical Performance Characteristics.  
Specifications subject to change without notice.  
–2–  
REV. F  
AD7824/AD7828  
TIMING CHARACTERISTICS1  
(VDD = 5 V; VREF(+) = 5 V; VREF(–) = GND = 0 V, unless otherwise noted.)  
Limit at 25؇C  
Limit at TMIN, TMAX  
Limit at TMIN, TMAX  
Parameter  
(All Grades)  
(K, L, B, C Grades)  
(T, U Grades)  
Unit  
Conditions/Comments  
tCSS  
tCSH  
tAS  
tAH  
tRDY  
0
0
0
30  
40  
0
0
0
35  
60  
0
0
0
40  
60  
ns min  
ns min  
ns min  
ns min  
ns max  
CS to RD Setup Time  
CS to RD Hold Time  
Multiplexer Address Setup Time  
Multiplexer Address Hold Time  
CS to RDY Delay. Pull-Up  
Resistor 5 k.  
Conversion Time, Mode 0  
Data Access Time after RD  
Data Access Time after INT, Mode 0  
RD to INT Delay  
2
tCRD  
tACC1  
tACC2  
tlNTH  
2.0  
85  
50  
2.4  
110  
60  
2.8  
120  
70  
µs max  
ns max  
ns max  
ns typ  
3
3
2
40  
65  
70  
75  
60  
500  
60  
600  
100  
70  
500  
80  
100  
70  
600  
80  
ns max  
ns max  
ns min  
ns min  
ns max  
4
tDH  
tP  
tRD  
Data Hold Time  
Delay Time between Conversions  
Read Pulsewidth, Mode 1  
500  
400  
NOTES  
1Sample tested at 25°C to ensure compliance. All input control signals are specified with tRISE = tFALL = 20 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
2CL = 50 pF.  
3Measured with load circuits of Figure 1 and defined as the time required for an output to cross 0.8 V or 2.4 V.  
4Defined as the time required for the data lines to change 0.5 V when loaded with the circuits of Figure 2.  
Specifications subject to change without notice.  
Test Circuits  
DBN  
DBN  
3k  
10pF  
3k⍀  
100pF  
DGND  
DGND  
a. VOH to High-Z  
a. High-Z to VOH  
5V  
5V  
3k  
3k⍀  
DBN  
DBN  
10pF  
DGND  
100pF  
DGND  
b. VOL to High-Z  
b. High-Z to VOL  
Figure 2. Load Circuits for Data Hold Time Test  
Figure 1. Load Circuits for Data Access Time Test  
REV. F  
–3–  
AD7824/AD7828  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
Operating Temperature Range  
Commercial (K, L Versions) . . . . . . . . . . . . . . 0°C to 70°C  
Industrial (B, C Versions) . . . . . . . . . . . . . –40°C to +85°C  
Extended (T, U Versions) . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 secs) . . . . . . . . . . . . 300°C  
Power Dissipation (Any Package) to 75°C . . . . . . . . . 450 mW  
Derates above 75°C by . . . . . . . . . . . . . . . . . . . . . . 6 mW/°C  
*Stresses above those listed under Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional operation  
of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, 7 V  
Digital Input Voltage to GND  
(RD, CS, A0, A1, and A2) . . . . . . . . . –0.3 V, VDD + 0.3 V  
Digital Output Voltage to GND  
(DB0, DB7, RDY, and INT) . . . . . . . –0.3 V, VDD + 0.3 V  
VREF (+) to GND . . . . . . . . . . . . . . . . . VREF (–), VDD + 0.3 V  
VREF (–) to GND . . . . . . . . . . . . . . . . . . . . . . . . 0 V, VREF (+)  
Analog Input (Any Channel) . . . . . . . . . . –0.3 V, VDD + 0.3 V  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although AD7824/AD7828 feature proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
PIN CONFIGURATIONS  
DIP/SOIC/SSOP  
ORDERING GUIDE  
Total  
Temperature  
Range  
Unadjusted  
Error (LSBs) Option  
Package  
Model  
1
2
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
AIN6  
AIN5  
AIN4  
AIN3  
AIN2  
AIN1  
NC  
28 AIN7  
27 AIN8  
AIN4  
AIN3  
AIN2  
AIN1  
NC  
V
DD  
NC  
AD7824KN  
AD7824LN  
AD7824KR  
AD7824BQ  
AD7824CQ  
0°C to 70°C  
1
1/2  
1
1
1/2  
1
N-24  
N-24  
R-24  
Q-24  
Q-24  
Q-24  
Q-24  
3
3
26  
V
DD  
A0  
0°C to 70°C  
4
4
25 A0  
A1  
0°C to 70°C  
5
5
24 A1  
DB7  
DB6  
DB5  
DB4  
–40°C to +85°C  
–40°C to +85°C  
AD7824  
TOP VIEW  
(Not to Scale)  
6
6
23 A2  
DB0  
DB1  
DB2  
DB3  
AD7828  
TOP VIEW  
(Not to Scale)  
7
7
22 DB7  
21 DB6  
20 DB5  
19 DB4  
AD7824TQ* –55°C to +125°C  
8
8
DB0  
DB1  
DB2  
DB3  
RD  
AD7824UQ* –55°C to +125°C  
1/2  
9
9
CS  
AD7828KN  
AD7828LN  
AD7828KP  
AD7828LP  
AD7828BQ  
AD7828CQ  
AD7828BR  
0°C to 70°C  
1
1/2  
1
1/2  
1
1/2  
+1  
1/2  
1
1/2  
1
1/2  
N-28  
N-28  
P-28A  
P-28A  
Q-28  
Q-28  
R-28  
RS-28  
Q-28  
Q-28  
E-28A  
E-28A  
10  
11  
12  
13  
14  
10  
11  
12  
RDY  
RD  
INT  
0°C to 70°C  
18  
V
REF  
(+)  
(–)  
CS  
0°C to 70°C  
17 RDY  
GND  
V
REF  
0°C to 70°C  
16  
15  
V
(+)  
(–)  
INT  
REF  
NC = NO CONNECT  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
GND  
V
REF  
NC = NO CONNECT  
PLCC  
AD7828LRS 0°C to 70°C  
AD7828TQ* –55°C to +125°C  
AD7828UQ* –55°C to +125°C  
AD7828TE* –55°C to +125°C  
AD7828UE* –55°C to +125°C  
4
3
2
1
28 27 26  
PIN 1  
5
6
25  
AIN2  
AIN1  
NC  
A0  
IDENTIFIER  
24 A1  
23  
*Available to /883B processing only. Contact our local sales office for military  
data sheet. For U.S. Standard Military Drawing (SMD) see DESC Drawing  
#5692-88764.  
7
A2  
22 DB7  
AD7828  
DB0  
DB1  
DB2  
8
TOP VIEW  
(Not to Scale)  
9
21  
20  
19  
DB6  
DB5  
DB4  
LCCC  
10  
DB3 11  
4
3
2
1
28 27 26  
12 13 14 15 16 17 18  
25  
24  
23  
22  
21  
20  
19  
5
6
A0  
AIN2  
AIN1  
NC  
A1  
7
A2  
AD7828  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
8
DB0  
DB1  
DB2  
DB3  
DB7  
DB6  
DB5  
DB4  
9
10  
11  
12 13 14 15 16 17 18  
NC = NO CONNECT  
–4–  
REV. F  
Typical Performance Characteristics–AD7824/AD7828  
3
14  
13  
12  
V
= 5V  
DD  
V
= 5.25V  
DD  
2
11  
10  
9
V
= 5V  
DD  
V
= 4.75V  
50  
DD  
8
1
–100  
–50  
T
0
50  
100  
150  
–100  
–50  
T
0
100  
150  
900  
150  
– AMBIENTTEMPERATURE – ؇C  
– AMBIENTTEMPERATURE – ؇C  
A
A
TPC 1. Conversion Time vs. Temperature  
TPC 4. Power Supply Current vs. Temperature  
(Not Including Reference Ladder)  
2.0  
1.5  
2.0  
V
= 5V  
= 5V  
= 25؇C  
DD  
V
= 5V  
DD  
V
REF  
T
= 25؇C  
A
T
A
1.5  
1.0  
0.5  
1.0  
0.5  
0
0
0
1
2
3
4
5
300  
400  
500  
600  
700  
800  
V
–V  
tP – ns  
REF  
V
REF  
256  
*1LSB =  
TPC 2. Accuracy vs. VREF [VREF = VREF (+) – VREF (–)]  
TPC 5. Accuracy vs. tP  
–36  
10  
8
ENCODE RATE = 400kHz  
INPUT SIGNAL = 5V p-p  
V
= 5V  
DD  
–38  
MEASUREMENT BANDWIDTH = 80kHz  
–40  
I
, V = 2.4V  
SOURCE OUT  
–42  
6
–44  
–46  
–48  
–50  
4
I
, V = 0.4V  
SINK OUT  
2
0
–100  
–52  
1
2
3
4
5
7
10  
20 30 40 50 70 100  
–50  
0
50  
100  
INPUT FREQUENCY – kHz  
T
– AMBIENTTEMPERATURE – ؇C  
A
TPC 3. Signal Noise Ratio vs. Input Frequency  
TPC 6. Output Current vs. Temperature  
REV. F  
–5–  
AD7824/AD7828  
OPERATIONAL DIAGRAM  
APPLYING THE AD7824/AD7828  
The AD7824 is a 4-channel 8-bit ADC and the AD7828 is an  
8-channel 8-bit ADC. Operational diagrams for both of these  
devices are shown in Figures 3 and 4. The addition of just a 5 V  
reference allows the devices to perform the analog-to-digital function.  
REFERENCE AND INPUT  
The two reference inputs on the AD7824/AD7828 are fully differ-  
ential and define the zero to full-scale input range of the ADC.  
As a result, the span of the analog input voltage for all channels  
can easily be varied. By reducing the reference span, VREF (+) to  
VREF (–), to less than 5 V, the sensitivity of the converter can be  
increased (e.g., if VREF = 2 V then 1 LSB = 7.8 mV). The input/  
reference arrangement also facilitates ratiometric operation.  
AIN4  
AIN3  
AIN2  
AIN1  
NC  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
5V  
V
DD  
NC  
A0  
ANALOG INPUTS  
0V TO 5V  
3
P ADDRESS  
BUS  
This reference flexibility also allows the input channel voltage  
span to be offset from zero. The voltage at VREF (–) sets the  
input level for all channels, which produces a digital output of  
all zeroes. Therefore, although the analog inputs are not them-  
selves differential, they have nearly differential input capability  
in most measurement applications because of the reference  
design. Figures 5 to 7 show some of the configurations that are  
possible.  
4
A1  
AD7824  
5
DB7  
DB6  
DB5  
DB4  
DB0  
DB1  
DB2  
DB3  
6
P 4MSB  
DATA BUS  
7
P 4LSB  
DATA BUS  
8
P CONTROL INPUT  
9
CS  
10  
11  
12  
RD  
RDY  
P CONTROL INPUT  
STATUS OUTPUT  
5V  
V
(+)  
(–)  
STATUS OUTPUT  
INT  
GND  
REF  
V
REF  
V
(+)  
(–)  
AIN1  
GND  
NC = NO CONNECT  
IN  
AD7824*  
AD7828*  
V
IN  
Figure 3. AD7824 Operational Diagram  
5V  
V
DD  
0.1F  
47F  
V
(+)  
REF  
1
2
AIN6  
AIN5  
AIN4  
AIN3  
AIN2  
AIN1  
NC  
AIN7 28  
AIN8 27  
ANALOG INPUTS  
0V TO 5V  
V
(–)  
REF  
5V  
3
V
DD  
26  
ANALOG INPUTS  
0V TO 5V  
4
A0 25  
A1 24  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
ONLY CHANNEL 1 SHOWN.  
P ADDRESS  
BUS  
5
6
A2 23  
Figure 5. Power Supply as Reference  
AD7828  
7
DB7 22  
DB6 21  
DB5 20  
DB4 19  
8
DB0  
DB1  
DB2  
DB3  
RD  
P 4MSB  
DATA BUS  
V
(+)  
(–)  
AIN1  
GND  
IN  
9
P 4LSB  
DATA BUS  
AD7824*  
AD7828*  
10  
11  
12  
13  
14  
V
IN  
P CONTROL INPUT  
STATUS OUTPUT  
5V  
18  
CS  
5V  
V
DD  
P CONTROL INPUT  
RDY 17  
(+) 16  
0.1F  
47F  
AD580  
V
(+)  
REF  
STATUS OUTPUT  
V
V
INT  
REF  
0.1F  
10F  
V
(–)  
REF  
GND  
(–) 15  
REF  
NC = NO CONNECT  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
ONLY CHANNEL 1 SHOWN.  
Figure 4. AD7828 Operational Diagram  
CIRCUIT INFORMATION  
Figure 6. External Reference Using the AD580, Full-Scale  
Input is 2.5 V  
BASIC DESCRIPTION  
The AD7824/AD7828 uses a half-flash conversion technique  
whereby two 4-bit flash ADCs are used to achieve an 8-bit result.  
Each 4-bit flash ADC contains 15 comparators that compare  
the unknown input to a reference ladder to get a 4-bit result.  
For a full 8-bit reading to be realized, the upper 4-bit flash, the  
most significant (MS) flash, performs a conversion to provide  
the four most significant data bits. An internal DAC, driven by  
the four MSBs, then recreates an analog approximation of the  
input voltage. This analog result is subtracted from the input,  
and the difference is converted by the lower flash ADC, the least  
significant (LS) flash, to provide the four least significant bits of  
the output data. The most significant flash ADC also has one  
additional comparator to detect overrange on the analog input.  
V
(+)  
AIN1  
GND  
IN  
AD7824*  
AD7828*  
5V  
V
DD  
DB7  
0.1F  
47F  
V1  
V2  
V
(+)  
(–)  
REF  
DATA  
DB0  
V
REF  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
ONLY CHANNEL 1 SHOWN.  
V
(+)  
IN  
V1 V2  
DATA =  
؋
 256 (FOR ALL CHANNELS)  
Figure 7. Input Not Referenced to GND  
–6–  
REV. F  
AD7824/AD7828  
interest. It is important that the amplifier driving the AD7824/  
AD7828 analog inputs have sufficient loop gain at the input signal  
frequency as to make the output impedance low.  
INPUT CURRENT  
Due to the novel conversion techniques employed by the AD7824/  
AD7828, the analog input behaves somewhat differently than in  
conventional devices. The ADC’s sampled-data comparators  
take varying amounts of input current depending on which cycle  
the conversion is in.  
Suitable op amps for driving the AD7824/AD7828 are the AD544  
or AD644.  
The equivalent input circuit of the AD7824/AD7828 is shown  
in Figure 8. When a conversion starts (CS and RD going low),  
all input switches close, and the selected input channel is con-  
nected to the most significant and least significant comparators.  
Therefore, the analog input is simultaneously connected to  
31 input capacitors of 1 pF each.  
INHERENT SAMPLE-HOLD  
A major benefit of the AD7824’s and AD7828’s analog input  
structure is its ability to measure a variety of high speed signals  
without the help of an external sample-and-hold. In a conven-  
tional SAR type converter, regardless of its speed, the input  
must remain stable to at least 1/2 LSB throughout the conversion  
process if rated accuracy is to be maintained. Consequently, for  
many high speed signals, this signal must be externally sampled  
and held stationary during the conversion. The AD7824/AD7828  
input comparators, by nature of their input switching, inherently  
accomplish this sample-and-hold function. Although the conver-  
sion time for AD7824/AD7828 is 2 µs, the time for which any  
selected analog input must be 1/2 LSB stable is much smaller.  
The AD7824/AD7828 tracks the selected input channel for  
approximately 1 µs after conversion start. The value of the analog  
input at that instant (1 µs from conversion start) is the measured  
value. This value is then used in the least significant flash to  
generate the lower four bits of data.  
C
S
2pF  
1pF  
R
R
ON  
R MUX  
S
AIN1  
V
IN  
C
S
12pF  
TO LS  
LADDER  
1pF  
15LSB  
COMPARATORS  
1pF  
R
ON  
AD7824/  
AD7828  
TO MS  
SINUSOIDAL INPUTS  
1pF  
LADDER  
The AD7824/AD7828 can measure input signals with slew rates  
as high as 157 mV/µs to the rated specifications. This means that  
the analog input frequency can be up to 10 kHz without the aid  
of an external sample-and-hold. Furthermore, the AD7828 can  
measure eight 10 kHz signals without a sample-and-hold. The  
Nyquist criterion requires that the sampling rate be twice the  
input frequency (i.e., 2 × 10 kHz). This requires an ideal anti-  
aliasing filter with an infinite roll-off. To ease the problem of  
antialiasing filter design, the sampling rate is usually much greater  
16MSB  
COMPARATORS  
Figure 8. AD7824/AD7828 Equivalent Input Circuit  
The input capacitors must charge to the input voltage through  
the on resistance of the analog switches (about 3 kto 6 k). In  
addition, about 14 pF of input stray capacitance must be charged.  
The analog input for any channel can be modelled as an RC  
network, as shown in Figure 9. As RS increases, it takes longer  
for the input capacitance to charge.  
than the Nyquist criterion. The maximum sampling rate (FMAX  
for the AD7824/AD7828 can be calculated as follows:  
)
1
FMAX  
=
=
R
350⍀  
R MUX  
ON  
tCRD + tP  
R
800⍀  
S
AIN1  
C
C
S2  
2pF  
S1  
V
31pF  
1
IN  
12pF  
FMAX  
= 400 kHz  
2E – 6 + 0.5E – 6  
t
CRD = AD7824/AD7828 Conversion Time  
tP = Minimum Delay Between Conversion  
Figure 9. RC Network Model  
This permits a maximum sampling rate of 50 kHz for each of  
the eight channels when using the AD7828 and 100 kHz for  
each of the four channels when using the AD7824.  
The time for which the input comparators track the analog input  
is approximately 1 µs at the start of conversion. Because of input  
transients on the analog inputs, it is recommended that a source  
impedance no greater than 100 be connected to the analog  
inputs. The output impedance of an op amp is equal to the open  
loop output impedance divided by the loop gain at the frequency of  
REV. F  
–7–  
AD7824/AD7828  
UNIPOLAR OPERATION  
25k  
The analog input range for any channel of the AD7824/AD7828 is  
0 V to 5 V as shown in the unipolar operational diagram of  
Figure 10. Figure 11 shows the designed code transitions that  
occur midway between successive integer LSB values (i.e., 1/2 LSB,  
3/2 LSB, 5/2 LSB, FS 3/2 LSBs). The output code is natural  
binary with 1 LSB = FS/256 = (5/256) V = 19.5 mV.  
40k⍀  
27k⍀  
V
IN  
AD544  
AIN1  
AD7824*  
AD7828*  
5V  
12k⍀  
5V  
V
(+)  
REF  
5V  
V
DD  
0.1F  
47F  
DB7  
DB0  
V
(–)  
REF  
GND  
5V  
V
DD  
0.1F  
47F  
V
REF  
5V  
V
(+)  
(–)  
REF  
AIN1  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
ONLY CHANNEL 1 SHOWN.  
AD7824*  
AD7828*  
V
IN  
0VTO 5V  
DB7  
Figure 12. AD7824/AD7828 Bipolar 4 V Operation  
V
REF  
GND  
DB0  
11111111  
FS = 8V  
1LSB = FS/256  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
11111110  
11111101  
10000010  
10000001  
ONLY CHANNEL 1 SHOWN.  
Figure 10. AD7824/AD7828 Unipolar 0 V to 5 V Operation  
+FS  
2
FULL-SCALE  
TRANSITION  
10000000  
01111111  
–FS  
2
+ 1LSB  
11111111  
11111110  
11111101  
01111110  
00000010  
00000001  
00000000  
FS  
1LSB =  
256  
0V  
AIN, INPUTVOLTAGE – LSB  
00000011  
00000010  
00000001  
00000000  
Figure 13. Ideal Input/Output Transfer Characteristic for  
4 V Operation  
TIMING AND CONTROL  
0
1LSB 2LSB 3LSB  
AIN, INPUTVOLTAGE – LSB  
FS  
FS – 1LSB  
The AD7824/AD7828 has two digital inputs for timing and  
control. These are Chip Select (CS) and Read (RD). A READ  
operation brings CS and RD low, which starts a conversion on  
the channel selected by the multiplexer address inputs (see  
Table I). There are two modes of operation as outlined by the  
timing diagrams of Figures 14 and 15. Mode 0 is designed for  
microprocessors that can be driven into a WAIT state. A  
READ operation (i.e., CS and RD are taken low) starts a con-  
version and data is read when conversion is complete. Mode l  
does not require microprocessor WAIT states. A READ operation  
initiates a conversion and reads the previous conversion results.  
Figure 11. Ideal Input/Output Transfer Characteristic for  
Unipolar 0 V to 5 V Operation  
BIPOLAR OPERATION  
The circuit of Figure 12 is designed for bipolar operation. An  
AD544 op amp conditions the signal input (VIN) so that only  
positive voltages appear at AIN1. The closed loop transfer func-  
tion of the op amp for the resistor values shown is given below:  
AIN1 = 2.5 0.625V Volts  
(
)
IN  
Table I. Truth Table for Input Channel Selection  
The analog input range is 4 V and the LSB size is 31.25 mV.  
The output code is complementary offset binary. The ideal  
input/output characteristic is shown in Figure 13.  
AD7824  
AD7828  
A1 A0  
A1  
A0  
A2  
Channel  
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
–8–  
REV. F  
AD7824/AD7828  
MODE 0  
MODE 1  
Figure 14 shows the timing diagram for Mode 0 operation. This  
mode can only be used for microprocessors that have a WAIT  
state facility, whereby a READ instruction cycle can be extended  
to accommodate slow memory devices. A READ operation brings  
CS and RD low, which starts a conversion. The analog multiplexer  
address inputs must remain valid while CS and RD are low. The  
data bus (DB7–DB0) remains in the three-state condition until  
conversion is complete. There are two converter status outputs on  
the AD7824/AD7828, interrupt (INT) and ready (RDY), which  
can be used to drive the microprocessor READY/WAIT input.  
The RDY is an open-drain output (no internal pull-up device) that  
goes low on the falling edge of CS and goes high impedance at the  
end of conversion when the 8-bit conversion result appears on the  
data outputs. If the RDY status is not required, the external  
pull-up resistor can be omitted and the RDY output tied to GND.  
The INT goes low when conversion is complete and returns high  
on the rising edge of CS or RD.  
Mode 1 operation is designed for applications where the micropro-  
cessor is not forced into a WAIT state. A READ operation takes  
CS and RD low, which triggers a conversion (see Figure 15). The  
multiplexer address inputs are latched on the rising edge of RD.  
Data from the previous conversion is read from the three-state  
data outputs (DB7–DB0). This data may be disregarded if not  
required. Note that the RDY output (open drain output) does  
not provide any status information in this mode and must be  
connected to GND. At the end of conversion, INT goes low. A  
second READ operation is required to access the new conversion  
result. This READ operation latches a new address into the multi-  
plexer inputs and starts another conversion. INT returns high at the  
end of the second READ operation, when CS or RD returns high.  
A delay of 2.5 µs must be allowed between READ operations.  
CS  
tCSH  
tCSS  
tCSS  
RD  
tP  
tAS  
tAS  
ANALOG  
CHANNEL  
ADDRESS  
ADDRESS  
VALID  
ADDRESS  
VALID  
tAH  
RDY  
tRDY  
tINTH  
INT  
tCRD  
tACC2  
tDH  
HIGH IMPEDANCE  
DATA  
VALID  
DATA  
Figure 14. Mode 0 Timing Diagram  
CS  
RD  
tCSS  
tCSH  
tCSS  
tCSH  
tRD  
tRD  
tP  
tAS  
tAS  
ANALOG  
CHANNEL  
ADDRESS  
ADDRESS  
VALID  
ADDRESS  
VALID  
tAH  
tCRD  
tAH  
tINTH  
tINTH  
INT  
tACC1  
tDH  
tACC1  
tDH  
OLD  
VALID  
NEW  
VALID  
DATA  
Figure 15. Mode 1 Timing Diagram  
REV. F  
–9–  
AD7824/AD7828  
to any of the addresses in Table II starts a conversion and reads  
the conversion result.  
MICROPROCESSOR INTERFACING  
The AD7824/AD7828 is designed to interface to microprocessors  
as Read Only Memory (ROM). Analog channel selection, con-  
version start, and data read operations are controlled by CS, RD,  
and the channel address inputs. These signals are common to  
all memory peripheral devices.  
MOVE × B $C000, D0  
Once conversion has begun, the MC68000 inserts WAIT states  
until INT goes low, asserting DTACK at the end of conversion.  
The microprocessor then places the conversion results into the  
D0 register.  
Z80 MICROPROCESSOR  
Figure 16 shows a typical AD7824/AD7828–Z80 interface. The  
AD7824/AD7828 is operating in Mode 0. Assume the ADC is  
assigned a memory block starting at address C000. The follow-  
ing LOAD instruction to any of the addresses listed in Table II  
will start a conversion of the selected channel and read the  
conversion result.  
A23  
A2  
A1  
ADDRESS BUS  
A0  
A1  
A0 A1 A2**  
CS  
ADDRESS  
DECODE  
AS  
EN  
LD B, (C000)  
R/W  
RD  
At the beginning of the instruction cycle when the ADC  
address is selected, RDY asserts the WAIT input so that the  
Z80 is forced into a WAIT state. At the end of conversion,  
RDY returns high and the conversion result is placed in the B  
register of the microprocessor.  
CLR  
7474  
MC68000  
AD7824*  
AD7828*  
5V  
5k  
D
DTACK  
CK  
RDY  
DB7  
Q
D7  
DATA BUS  
A15  
A2  
A1  
D0  
ADDRESS BUS  
DB0  
A0  
A0  
A0 A1 A2**  
ADDRESS  
DECODE  
EN  
MREQ  
Z80  
*
**  
LINEAR CIRCUITRY OMITTED FOR CLARITY.  
FORTHE AD7828 ONLY  
5V  
5k  
CS  
AD7824*  
AD7828*  
Figure 17. AD7824/AD7828–MC68000 Interface  
RDY  
WAIT  
RD  
RD  
TMS32010 MICROCOMPUTER  
D7  
DB7  
A TMS32010 interface is shown in Figure 18. The AD7824/  
AD7828 is operating in Mode 1 (i.e., no µP WAIT states). The  
ADC is mapped at a port address. The following I/O instruction  
starts a conversion and reads the previous conversion result into  
the accumulator.  
DATA BUS  
D0  
DB0  
IN, A PA (PA = PORT ADDRESS)  
*
**  
LINEAR CIRCUITRY OMITTED FOR CLARITY.  
FORTHE AD7828 ONLY  
The port address (000 to 111) selects the analog channel to be  
converted. When conversion is complete, a second I/O instruc-  
tion (IN, A PA) reads the up-to-date data into the accumulator  
and starts another conversion. A delay of 2.5 µs must be allowed  
between conversions.  
Figure 16. AD7824/AD7828–Z80 lnterface  
Table II. Address Channel Selection  
AD7824  
Channel  
AD7828  
Channel  
Address  
PA2  
PA1  
PA0  
A2**  
A1  
C000  
C001  
C002  
C003  
C004  
C005  
C006  
C007  
1
2
3
4
1
2
3
4
5
6
7
8
AD7824*  
AD7828*  
A0  
TMS32010  
MEN  
CS  
DEN  
RD  
D7  
DB7  
DATA BUS  
D0  
DB0  
MC68000 MICROPROCESSOR  
Figure 17 shows an MC68000 interface. The AD7824/AD7828  
is operating in Mode 0. Assume the ADC is again assigned a  
memory block starting at address C000. A MOVE instruction  
*
**  
LINEAR CIRCUITRY OMITTED FOR CLARITY.  
FORTHE AD7828 ONLY  
Figure 18. AD7824/AD7828–TMS32010 Interface  
REV. F  
–10–  
AD7824/AD7828  
5V  
SAMPLE  
PULSE  
15V  
5V  
BAND-PASS  
FILTER 1  
V
DD  
AIN1  
AIN2  
CS  
RD  
10V  
V
V
RD  
INT  
CS  
DD  
DD  
BAND-PASS  
FILTER 2  
V
REF  
WR  
AIN1  
AIN2  
AIN3  
AIN4  
AD7226  
SPEECH  
INPUT  
DB7  
DB0  
AMP  
DB7  
DB0  
DB7  
DB0  
V
V
V
A
B
C
D
V 1  
O
V
V
O
V
O
OUT  
AD7828  
DATA  
2
3
4
BAND-PASS  
FILTER 7  
OUT  
O
AIN7  
AIN8  
OUT  
AD7824  
A1  
A0  
A1  
A0  
A2  
A1  
A0  
V
V
V
(+)  
(–)  
OUT  
BAND-PASS  
FILTER 8  
REF  
DGND  
AGND  
REF  
GND  
V
SS  
V
(+)  
5V  
REF  
V
(–) GND  
REF  
Figure 20. 4-Channel Fast Infinite Sample-and-Hold  
Figure 19. Speech Analysis Using Real-Time Filtering  
OUTLINE DIMENSIONS  
24-Lead Plastic Dual-in-Line Package [PDIP]  
(N-24)  
Dimensions shown in inches and (millimeters)  
1.185 (30.01)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.99)  
1.165 (29.59)  
1.145 (29.08)  
24  
1
13  
12  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.180  
(4.57)  
MAX  
0.015 (0.38) MIN  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.100  
(2.54)  
BSC  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.060 (1.52) SEATING  
0.050 (1.27)  
0.045 (1.14)  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-095AG  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
28-Lead Plastic Dual-in-Line Package [PDIP]  
(N-28)  
Dimensions shown in inches and (millimeters)  
1.565 (39.7)  
1.380 (35.1)  
28  
1
15  
14  
0.580 (14.73)  
0.485 (12.32)  
0.100 (2.54)  
BSC  
0.625 (15.87)  
0.600 (15.24)  
0.195 (4.95)  
0.125 (3.18)  
0.015 (0.39)  
MIN  
0.250 (6.35)  
MAX  
0.200 (5.05)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.70 (1.77)  
0.30 (0.77)  
0.022 (0.558)  
0.014 (0.356)  
COMPLIANT TO JEDEC STANDARDS MS-011AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. F  
–11–  
AD7824/AD7828  
OUTLINE DIMENSIONS  
24-Lead Standard Small Outline Package [SOIC]  
Wide Body  
(R-24)  
Dimensions shown in millimeters and (inches)  
15.60 (0.6142)  
15.20 (0.5984)  
24  
13  
12  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
؋
 45؇  
0.30 (0.0118)  
0.10 (0.0039)  
8؇  
0؇  
SEATING  
PLANE  
1.27 (0.0500) 0.51 (0.020)  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
BSC  
0.33 (0.013)  
COMPLIANT TO JEDEC STANDARDS MS-013AD  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
28-Lead Standard Small Outline Package [SOIC]  
Wide Body  
(R-28)  
Dimensions shown in millimeters and (inches)  
18.10 (0.7126)  
17.70 (0.6969)  
28  
1
15  
14  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
؋
 45؇  
0.30 (0.0118)  
0.10 (0.0039)  
8؇  
0؇  
1.27 (0.0500) 0.51 (0.0201) SEATING  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
PLANE  
BSC  
0.33 (0.0130)  
COMPLIANT TO JEDEC STANDARDS MS-013AE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–12–  
REV. F  
AD7824/AD7828  
OUTLINE DIMENSIONS  
24-Lead Ceramic DIP - Glass Hermetic Seal [CERDIP]  
(Q-24)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49)  
MAX  
0.005 (0.13)  
MIN  
0.310 (7.87)  
0.220 (5.59)  
24  
13  
12  
PIN 1  
1
0.060 (1.52)  
0.015 (0.38)  
0.320 (8.13)  
0.290 (7.37)  
0.200 (5.08)  
MAX  
1.280 (32.51) MAX  
0.150 (3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
15  
0
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
28-Lead Ceramic DIP - Glass Hermetic Seal [CERDIP]  
(Q-28)  
Dimensions shown in inches and (millimeters)  
0.100 (2.54)  
MAX  
0.005 (0.13)  
MIN  
28  
15  
14  
0.610 (15.49)  
0.500 (12.70)  
PIN 1  
1
0.620 (15.75)  
0.590 (14.99)  
0.015 (0.38)  
MIN  
0.225(5.72)  
MAX  
1.490 (37.85) MAX  
0.150 (3.81)  
MIN  
0.018 (0.46)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
15  
0
0.100  
(2.54)  
BSC  
0.070 (1.78) SEATING  
PLANE  
0.030 (0.76)  
0.026 (0.66)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
28-Terminal Ceramic Leaded Chip Carrier [LCC]  
(E-28A)  
Dimensions shown in inches and (millimeters)  
0.300 (7.62)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.075  
(1.91)  
REF  
0.020 (0.51)  
MIN  
19  
25  
0.028 (0.71)  
0.022 (0.56)  
18  
26  
28  
0.05 (1.27)  
BSC  
0.458  
0.458 (11.63)  
0.442 (11.23)  
(11.63)  
MAX  
SQ  
BOTTOM  
VIEW  
1
SQ  
0.15 (3.81)  
REF  
0.075 (1.91)  
REF  
12  
4
11  
5
0.095 (2.41)  
0.075 (1.90)  
0.055 (1.40)  
0.045 (1.14)  
0.088 (2.24)  
0.054 (1.37)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. F  
–13–  
AD7824/AD7828  
OUTLINE DIMENSIONS  
28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
10.50  
10.20  
9.90  
28  
15  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
14  
1
1.85  
1.75  
1.65  
0.10  
COPLANARITY  
2.00 MAX  
0.25  
0.09  
8؇  
4؇  
0؇  
0.95  
0.75  
0.55  
0.38  
0.22  
0.65  
BSC  
0.05  
MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AH  
28-Lead Plastic Leaded Chip Carrier [PLCC]  
(P-28A)  
Dimensions shown in inches and (millimeters)  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.22)  
0.042 (1.07)  
0.056 (1.42)  
0.020 (0.51)  
0.042 (1.07)  
MIN  
4
5
26  
25  
0.048 (1.22)  
0.042 (1.07)  
0.021 (0.53)  
0.013 (0.33)  
BOTTOM  
VIEW  
0.430 (10.9)  
0.390 (9.9)  
0.050  
(1.27)  
BSC  
TOP VIEW  
(PINS DOWN)  
(PINS UP)  
0.032 (0.81)  
0.026 (0.66)  
11  
12  
19  
18  
0.040 (1.02)  
0.025 (0.64)  
0.456 (11.582)  
0.450 (11.430)  
SQ  
0.120 (3.05)  
0.090 (2.29)  
0.495 (12.57)  
SQ  
0.485 (12.32)  
COMPLIANTTO JEDEC STANDARDS MO-047AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–14–  
REV. F  
AD7824/AD7828  
Revision History  
Location  
Page  
1/03—Data Sheet changed from REV. E to REV. F.  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to DIP/SOIC/SSOP, LCCC, AND PLCC Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edit to Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Edits to Circuit Information Basic Description section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Edits to Input Current section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Edit to Figure 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Edit to Figure 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4/02—Data Sheet changed from REV. D to REV. E.  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
REV. F  
–15–  
–16–  

相关型号:

5962-8876403XX

High Speed , 8-Channel, 8-Bit CMOS ADC
ADI

5962-8876403XX

8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 0.600 INCH, GLASS SEALED, CERDIP-28
ROCHESTER

5962-88764043A

High Speed , 8-Channel, 8-Bit CMOS ADC
ADI

5962-88764043A

8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CQCC28, CERAMIC, LCC-28
ROCHESTER

5962-88764043X

IC 8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CQCC28, CERAMIC, LCC-28, Analog to Digital Converter
ADI

5962-8876404XA

ADC, Flash Method, 8-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, CMOS, CDIP28, CERAMIC, DIP-24
MAXIM

5962-8876404XA

8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, CERAMIC, DIP-24
ADI

5962-8876404XB

IC 8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 1.280 X 0.310 INCH, CERDIP-28, Analog to Digital Converter
ADI

5962-8876404XC

IC 8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 1.280 X 0.310 INCH, CERDIP-28, Analog to Digital Converter
ADI

5962-8876404XX

High Speed , 8-Channel, 8-Bit CMOS ADC
ADI

5962-8876404XX

8-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 0.600 INCH, GLASS SEALED, CERDIP-28
ROCHESTER

5962-8876501RX

12-Bit Digital-to-Analog Converter
ETC