5962-8853901EA2 [ADI]

Precision Instrumentation Amplifier; 精密仪表放大器器
5962-8853901EA2
型号: 5962-8853901EA2
厂家: ADI    ADI
描述:

Precision Instrumentation Amplifier
精密仪表放大器器

仪表放大器
文件: 总28页 (文件大小:614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision  
Instrumentation Amplifier  
AD524  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Low noise: 0.3 μV p-p at 0.1 Hz to 10 Hz  
Low nonlinearity: 0.003% (G = 1)  
High CMRR: 120 dB (G = 1000)  
1
PROTECTION  
4.44k  
404Ω  
– INPUT  
AD524  
13  
12  
G = 10  
Low offset voltage: 50 μV  
G = 100  
V
Low offset voltage drift: 0.5 μV/°C  
Gain bandwidth product: 25 MHz  
Pin programmable gains of 1, 10, 100, 1000  
Input protection, power-on/power-off  
No external components required  
Internally compensated  
b
20kΩ  
20kΩ  
40Ω  
SENSE  
G = 1000 11  
RG  
20kΩ  
20kΩ  
20kΩ  
16  
3
1
2
OUTPUT  
RG  
20kΩ  
REFERENCE  
+ INPUT  
2
PROTECTION  
MIL-STD-883B and chips available  
16-lead ceramic DIP and SOIC packages and 20-terminal  
leadless chip carrier available  
Figure 1.  
Available in tape and reel in accordance with EIA-481A  
standard  
Standard military drawing also available  
GENERAL DESCRIPTION  
higher linearity C grade are specified from −25°C to +85°C.  
The S grade guarantees performance to specification over the  
extended temperature range −55°C to +125°C. The AD524 is  
available in a 16-lead ceramic DIP, 16-lead SBDIP, 16-lead SOIC  
wide packages, and 20-terminal leadless chip carrier.  
The AD524 is a precision monolithic instrumentation amplifier  
designed for data acquisition applications requiring high accu-  
racy under worst-case operating conditions. An outstanding  
combination of high linearity, high common-mode rejection,  
low offset voltage drift, and low noise makes the AD524 suitable  
for use in many data acquisition systems.  
PRODUCT HIGHLIGHTS  
The AD524 has an output offset voltage drift of less than  
25 μV/°C, input offset voltage drift of less than 0.5 μV/°C, CMR  
above 90 dB at unity gain (120 dB at G = 1000), and maximum  
nonlinearity of 0.003% at G = 1. In addition to the outstanding  
dc specifications, the AD524 also has a 25 kHz bandwidth  
(G = 1000). To make it suitable for high speed data acquisition  
systems, the AD524 has an output slew rate of 5 V/μs and settles  
in 15 μs to 0.01% for gains of 1 to 100.  
1. The AD524 has guaranteed low offset voltage, offset  
voltage drift, and low noise for precision high gain  
applications.  
2. The AD524 is functionally complete with pin program-  
mable gains of 1, 10, 100, and 1000, and single resistor  
programmable for any gain.  
3. Input and output offset nulling terminals are provided for  
very high precision applications and to minimize offset  
voltage changes in gain ranging applications.  
As a complete amplifier, the AD524 does not require any exter-  
nal components for fixed gains of 1, 10, 100 and 1000. For other  
gain settings between 1 and 1000, only a single resistor is required.  
The AD524 input is fully protected for both power-on and  
power-off fault conditions.  
4. The AD524 is input protected for both power-on and  
power-off fault conditions.  
5. The AD524 offers superior dynamic performance with a  
gain bandwidth product of 25 MHz, full power response of  
75 kHz and a settling time of 15 μs to 0.01% of a 20 V step  
(G = 100).  
The AD524 IC instrumentation amplifier is available in four  
different versions of accuracy and operating temperature range.  
The economical A grade, the low drift B grade, and lower drift,  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
 
 
AD524  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Offset and Output Offset................................................ 15  
Gain.............................................................................................. 16  
Input Bias Currents.................................................................... 17  
Common-Mode Rejection........................................................ 17  
Grounding................................................................................... 18  
Sense Terminal............................................................................ 18  
Reference Terminal .................................................................... 18  
Programmable Gain................................................................... 20  
Autozero Circuits ....................................................................... 20  
Error Budget Analysis................................................................ 21  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 25  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 8  
Connection Diagrams.................................................................. 8  
ESD Caution.................................................................................. 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits................................................................................. 14  
Theory of Operation ...................................................................... 15  
Input Protection.......................................................................... 15  
REVISION HISTORY  
11/07—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to General Description .................................................... 1  
Changes to Figure 1.......................................................................... 1  
Changes to Figure 3 and Figure 4 Captions .................................. 8  
Changes to Error Budget Analysis Section ................................. 21  
Changes to Ordering Guide .......................................................... 25  
4/99—Rev. D to Rev. E  
Rev. F | Page 2 of 28  
 
AD524  
SPECIFICATIONS  
@ VS = 15 V, RL = 2 kΩ and TA = +25°C, unless otherwise noted.  
All min and max specifications are guaranteed. Specifications shown in boldface are tested on all production units at the final electrical  
test. Results from those tests are used to calculate outgoing quality levels.  
Table 1.  
AD524A  
Typ  
AD524B  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
GAIN  
Gain Equation (External Resistor Gain Programming)  
40,000  
40,000  
+1 ± 20%  
+1 ± 20%  
RG  
RG  
Gain Range (Pin Programmable)  
Gain Error1  
1 to 1000  
1 to 1000  
G = 1  
G = 10  
G = 100  
G = 1000  
%
%
%
%
±±0±5  
±±025  
±±05  
±±0±ꢀ  
±±0.5  
±±0ꢀ5  
±.0±  
±20±  
Nonlinearity  
G = 1  
G = 10, G = 100  
G = 1000  
0.01  
0.01  
0.01  
0.00ꢀ  
0.00ꢀ  
0.01  
%
%
%
Gain vs. Temperature  
G = 1  
G = 10  
G = 100  
G = 1000  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
1ꢀ  
3ꢀ  
100  
10  
2ꢀ  
ꢀ0  
VOLTAGE OFFSET (May be Nulled)  
Input Offset Voltage  
vs. Temperature  
Output Offset Voltage  
vs. Temperature  
Offset Referred to the Input vs. Supply  
G = 1  
μV  
25±  
2
.±±  
±075  
μV/°C  
mV  
μV  
100  
5±  
dB  
dB  
dB  
dB  
7±  
85  
95  
.±±  
75  
95  
.±5  
..±  
G = 10  
G = 100  
G = 1000  
INPUT CURRENT  
Input Bias Current  
vs. Temperature  
Input Offset Current  
vs. Temperature  
nA  
pA/°C  
nA  
±5±  
±ꢀ5  
±25  
±.5  
100  
100  
100  
100  
pA/°C  
Rev. F | Page 3 of 28  
 
AD524  
AD524A  
Typ  
AD524B  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
INPUT  
Input Impedance  
Differential Resistance  
Differential Capacitance  
Common-Mode Resistance  
Common-Mode Capacitance  
Input Voltage Range  
Maximum Differential Input Linear (VDL)2  
Maximum Common-Mode Linear (VCM  
109  
10  
109  
10  
Ω
pF  
Ω
109  
109  
10  
10  
pF  
10  
10  
V
V
2
)
G
2
G
2
.2 V −  
× VD  
.2 V −  
× VD  
Common-Mode Rejection DC to 60 Hz with 1 kΩ Source Imbalance  
V
G = 1  
G = 10  
G = 100  
G = 1000  
dB  
dB  
dB  
dB  
7±  
9±  
.±±  
..±  
75  
95  
.±5  
..5  
OUTPUT RATING  
VOUT, RL = 2 kΩ  
DYNAMIC RESPONSE  
Small Signal – 3 dB  
G = 1  
G = 10  
G = 100  
G = 1000  
Slew Rate  
10  
10  
V
1
1
MHz  
kHz  
kHz  
kHz  
V/μs  
400  
1ꢀ0  
2ꢀ  
400  
1ꢀ0  
2ꢀ  
ꢀ.0  
ꢀ.0  
Settling Time to 0.01%, 20 V Step  
G = 1 to 100  
G = 1000  
1ꢀ  
7ꢀ  
1ꢀ  
7ꢀ  
μs  
μs  
NOISE  
Voltage Noise, 1 kHz  
RTI  
RTO  
7
90  
7
90  
nV/√Hz  
nV√Hz  
RTI, 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100, 1000  
Current Noise  
0.1 Hz to 10 Hz  
SENSE INPUT  
RIN  
1ꢀ  
2
0.3  
1ꢀ  
2
0.3  
μV p-p  
μV p-p  
μV p-p  
60  
60  
pA p-p  
20  
1ꢀ  
20  
1ꢀ  
kΩ 20%  
μA  
V
IIN  
Voltage Range  
Gain to Output  
REFERENCE INPUT  
RIN  
10  
10  
10  
10  
1
1
%
40  
1ꢀ  
40  
1ꢀ  
kΩ 20%  
μA  
V
IIN  
Voltage Range  
Gain to Output  
1
1
%
Rev. F | Page 4 of 28  
AD524  
AD524A  
Typ  
AD524B  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
TEMPERATURE RANGE  
Specified Performance  
Storage  
–2ꢀ  
–6ꢀ  
+8ꢀ  
+1ꢀ0  
–2ꢀ  
–6ꢀ  
+8ꢀ  
+1ꢀ0  
°C  
°C  
POWER SUPPLY  
Power Supply Range  
Quiescent Current  
1ꢀ  
3.ꢀ  
1ꢀ  
3.ꢀ  
V
mA  
±ꢁ  
±.8  
50±  
±ꢁ  
±.8  
50±  
1 Does not include effects of external resistor, RG.  
2 VOL is the maximum differential input voltage at G = 1 for specified nonlinearity.  
VDL at the maximum = 10 V/G.  
VD = actual differential input voltage.  
Example: G = 10, VD = 0.ꢀ0.  
V
CM = 12 V − (10/2 × 0.ꢀ0 V) = 9.ꢀ V.  
@ VS = 15 V, RL = 2 kΩ and TA = +25°C, unless otherwise noted.  
All min and max specifications are guaranteed. Specifications shown in boldface are tested on all production units at the final electrical  
test. Results from those tests are used to calculate outgoing quality levels.  
Table 2.  
AD524C  
Typ  
AD524S  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
GAIN  
Gain Equation (External Resistor Gain Programming)  
40,000  
40,000  
+1 ± 20%  
+1 ± 20%  
RG  
RG  
Gain Range (Pin Programmable)  
Gain Error1  
1 to 1000  
1 to 1000  
G = 1  
G = 10  
G = 100  
G = 1000  
%
%
%
%
±±0±2  
±±0.  
±±025  
±±05  
±±0±5  
±±025  
±±05  
±20±  
Nonlinearity  
G = 1  
G = 10, G = 100  
G = 1000  
0.003  
0.003  
0.01  
0.01  
0.01  
0.01  
%
%
%
Gain vs. Temperature  
G = 1  
G = 10  
G = 100  
G = 1000  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
10  
2ꢀ  
ꢀ0  
10  
2ꢀ  
ꢀ0  
VOLTAGE OFFSET (May be Nulled)  
Input Offset Voltage  
vs. Temperature  
Output Offset Voltage  
vs. Temperature  
Offset Referred to the Input vs. Supply  
G = 1  
μV  
5±  
.±±  
20±  
ꢀ0±  
5±  
μV/°C  
mV  
μV  
±05  
20±  
25  
dB  
dB  
dB  
dB  
8±  
75  
95  
.±5  
..±  
G = 10  
G = 100  
G = 1000  
.±±  
..±  
..5  
Rev. F | Page ꢀ of 28  
 
AD524  
AD524C  
Typ  
AD524S  
Typ  
Parameter  
Min  
Max  
±.5  
±.±  
Min  
Max  
±5±  
±ꢀ5  
Unit  
INPUT CURRENT  
Input Bias Current  
vs. Temperature  
Input Offset Current  
vs. Temperature  
nA  
pA/°C  
nA  
100  
100  
100  
100  
pA/°C  
INPUT  
Input Impedance  
Differential Resistance  
Differential Capacitance  
Common-Mode Resistance  
Common-Mode Capacitance  
Input Voltage Range  
109  
10  
109  
10  
Ω
pF  
Ω
109  
109  
10  
10  
pF  
Maximum Differential Input Linear (VDL)2  
10  
10  
V
V
2
Maximum Common-Mode Linear (VCM  
)
G
2
G
2
.2 V −  
× VD  
.2 V −  
× VD  
Common-Mode Rejection DC to 60 Hz with 1 kΩ Source Imbalance  
V
G = 1  
G = 10  
G = 100  
G = 1000  
dB  
dB  
dB  
dB  
8±  
7±  
9±  
.±±  
..±  
.±±  
..±  
.2±  
OUTPUT RATING  
VOUT, RL = 2 kΩ  
DYNAMIC RESPONSE  
Small Signal – 3 dB  
G = 1  
G = 10  
G = 100  
G = 1000  
Slew Rate  
10  
10  
V
1
1
MHz  
kHz  
kHz  
kHz  
V/μs  
400  
1ꢀ0  
2ꢀ  
400  
1ꢀ0  
2ꢀ  
ꢀ.0  
ꢀ.0  
Settling Time to 0.01%, 20 V Step  
G = 1 to 100  
G = 1000  
1ꢀ  
7ꢀ  
1ꢀ  
7ꢀ  
μs  
μs  
NOISE  
Voltage Noise, 1 kHz  
RTI  
RTO  
7
90  
7
90  
nV/√Hz  
nV√Hz  
RTI, 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100, 1000  
Current Noise  
0.1 Hz to 10 Hz  
SENSE INPUT  
RIN  
1ꢀ  
2
0.3  
1ꢀ  
2
0.3  
μV p-p  
μV p-p  
μV p-p  
60  
60  
pA p-p  
20  
1ꢀ  
20  
1ꢀ  
kΩ 20%  
μA  
V
IIN  
Voltage Range  
Gain to Output  
10  
10  
1
1
%
Rev. F | Page 6 of 28  
AD524  
AD524C  
Typ  
AD524S  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
REFERENCE INPUT  
RIN  
IIN  
Voltage Range  
Gain to Output  
TEMPERATURE RANGE  
Specified Performance  
Storage  
40  
1ꢀ  
40  
1ꢀ  
kΩ 20%  
μA  
V
10  
10  
1
1
%
–2ꢀ  
–6ꢀ  
+8ꢀ  
+1ꢀ0  
–ꢀꢀ  
–6ꢀ  
+8ꢀ  
+1ꢀ0  
°C  
°C  
POWER SUPPLY  
Power Supply Range  
Quiescent Current  
1ꢀ  
3.ꢀ  
1ꢀ  
3.ꢀ  
V
mA  
±ꢁ  
±.8  
50±  
±ꢁ  
±.8  
50±  
1 Does not include effects of external resistor RG.  
2 VOL is the maximum differential input voltage at G = 1 for specified nonlinearity.  
V
DL at the maximum = 10 V/G.  
VD = actual differential input voltage.  
Example: G = 10, VD = 0.ꢀ0.  
VCM = 12 V − (10/2 × 0.ꢀ0 V) = 9.ꢀ V.  
Rev. F | Page 7 of 28  
 
AD524  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
CONNECTION DIAGRAMS  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
RG  
1
– INPUT  
+ INPUT  
Parameter  
Rating  
OUTPUT NULL  
OUTPUT NULL  
G = 10  
Supply Voltage  
18 V  
RG  
2
Internal Power Dissipation  
Input Voltage1  
4ꢀ0 mW  
AD524  
TOP VIEW  
(Not to Scale)  
INPUT NULL  
INPUT NULL  
REFERENCE  
SHORT TO  
RG FOR  
2
G = 100  
(Either Input Simultaneously) |VIN| + |VS|  
Output Short-Circuit Duration  
Storage Temperature Range  
(R)  
<36 V  
Indefinite  
DESIRED  
GAIN  
G = 1000  
–V  
S
10 SENSE  
+V  
S
9
OUTPUT  
–6ꢀ°C to +12ꢀ°C  
–6ꢀ°C to +1ꢀ0°C  
(D, E)  
4
5
15  
14  
–V  
S
+V  
S
Operating Temperature Range  
ADꢀ24A/ADꢀ24B/ADꢀ24C  
ADꢀ24S  
INPUT  
OUTPUT  
–2ꢀ°C to +8ꢀ°C  
–ꢀꢀ°C to +12ꢀ°C  
+300°C  
OFFSET NULL  
OFFSET NULL  
Figure 3. Ceramic (D) and  
SOIC (RW-16 and D-16) Packages  
Lead Temperature (Soldering, 60 sec)  
1 Maximum input voltage specification refers to maximum voltage to which  
either input terminal may be raised with or without device power applied.  
For example, with 18 volt supplies maximum, VIN is 18 V; with zero supply  
voltage maximum, VIN is 36 V.  
3
2
1
20 19  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
18  
17  
16  
15  
14  
4
5
6
7
8
OUTPUT NULL  
G = 10  
RG  
2
INPUT NULL  
NC  
SHORT TO  
AD524  
TOP VIEW  
NC  
RG FOR  
2
DESIRED  
GAIN  
INPUT NULL  
REFERENCE  
G = 100  
G = 1000  
(Not to Scale)  
9
10 11 12 13  
NC = NO CONNECT  
OUTPUT  
NULL  
14  
SENSE  
10  
G = 10  
13  
G = 100 G = 1000  
12  
11  
OUTPUT  
7
5
19  
18  
NULL  
15  
9
+V  
–V  
S
S
OUTPUT  
INPUT  
OFFSET NULL  
OUTPUT  
OFFSET NULL  
8 +V  
S
RG 16  
1
Figure 4. Leadless Chip Carrier (E)  
0.103  
(2.61)  
–INPUT  
1
+INPUT  
2
ESD CAUTION  
7 –V  
S
RG  
2
3
6
4
5
REFERENCE  
INPUT  
NULL  
INPUT  
NULL  
0.170 (4.33)  
PAD NUMBERS CORRESPOND TO PIN NUMBERS FOR  
THE D-16 AND RW-16 16-LEAD CERAMIC PACKAGES.  
Figure 2. Metallization Photograph  
Contact factory for latest dimensions;  
Dimensions shown in inches and (mm)  
Rev. F | Page 8 of 28  
 
 
 
 
AD524  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
8
6
15  
10  
4
2
+25°C  
5
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
Figure 5. Input Voltage Range vs. Supply Voltage, G = 1  
Figure 8. Quiescent Current vs. Supply Voltage  
20  
16  
14  
12  
15  
10  
8
10  
5
6
4
2
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
Figure 6. Output Voltage Swing vs. Supply Voltage  
Figure 9. Input Bias Current vs. Supply Voltage  
30  
20  
10  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
0
10  
100  
1k  
10k  
–75  
–25  
25  
75  
125  
LOAD RESISTANCE ()  
TEMPERATURE (°C)  
Figure 7. Output Voltage Swing vs. Load Resistance  
Figure 10. Input Bias Current vs. Temperature  
Rev. F | Page 9 of 28  
 
AD524  
16  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
G = 1000  
G = 100  
14  
12  
G = 10  
G = 1  
10  
8
6
4
2
0
0
5
10  
15  
20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT VOLTAGE (±V)  
FREQUENCY (Hz)  
Figure 11. Input Bias Current vs. Input Voltage  
Figure 14. CMRR vs. Frequency, RTI, Zero to 1000 Source Imbalance  
30  
0
1
G = 1, 10, 100  
20  
2
3
4
5
10  
BANDWIDTH LIMITED  
6
G = 1000  
10k  
G = 100  
100k  
G = 10  
0
1k  
0
1
2
3
4
5
6
7
8
1M  
WARM-UP TIME (Minutes)  
FREQUENCY (Hz)  
Figure 12. Offset Voltage, RTI, Turn-On Drift  
Figure 15. Large Signal Frequency Response  
10  
8
6
1000  
100  
10  
4
2
0
1
G = 1000  
1
10  
100  
1000  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
GAIN (V/V)  
Figure 13. Gain vs. Frequency  
Figure 16. Slew Rate vs. Gain  
Rev. F | Page 10 of 28  
AD524  
160  
100k  
10k  
1k  
+V = 15V DC +  
S
1V p-p SINEWAVE  
140  
120  
100  
80  
60  
100  
40  
20  
0
0
1
10  
100  
1k  
10k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Positive PSRR vs. Frequency  
Figure 20. Input Current Noise vs. Frequency  
160  
0.1Hz TO 10Hz  
–V = –15V DC +  
S
1V p-p SINEWAVE  
140  
120  
5mV  
1s  
100  
80  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
VERTICAL SCALE; 1 DIVISION = 5µV  
Figure 18. Negative PSRR vs. Frequency  
Figure 21. Low Frequency Noise, G = 1 (System Gain = 1000)  
1000  
100  
10  
0.1Hz TO 10Hz  
10mV  
1s  
G = 1  
G = 10  
G = 100, 1000  
G = 1000  
1
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
VERTICAL SCALE; 1 DIVISION = 0.1µV  
Figure 19. RTI Noise Spectral Density vs. Gain  
Figure 22. Low Frequency Noise, G = 1000 (System Gain = 100,000)  
Rev. F | Page 11 of 28  
AD524  
–12 TO +12  
–8 TO +8  
–4 TO +4  
1%  
0.1%  
0.01%  
1mV  
10V  
10µs  
OUTPUT  
STEP (V)  
+4 TO –4  
+8 TO –8  
1%  
0.1%  
0.01%  
+12 TO –12  
0
5
10  
SETTLING TIME (µs)  
15  
20  
Figure 23. Settling Time, Gain = 1  
Figure 26. Large Signal Pulse Response and Settling Time, Gain = 10  
–12 TO +12  
0.1%  
0.01%  
1%  
–8 TO +8  
–4 TO +4  
1mV  
10V  
10µs  
OUTPUT  
STEP (V)  
+4 TO –4  
+8 TO –8  
1%  
0.01%  
15  
0.1%  
10  
+12 TO –12  
0
5
20  
SETTLING TIME (µs)  
Figure 24. Large Signal Pulse Response and Settling Time, Gain =1  
Figure 27. Settling Time, Gain = 100  
–12 TO +12  
0.1%  
0.01%  
1%  
–8 TO +8  
–4 TO +4  
1mV  
10V  
10µs  
OUTPUT  
STEP (V)  
+4 TO –4  
+8 TO –8  
1%  
5
0.1%  
0.01%  
+12 TO –12  
0
10  
SETTLING TIME (µs)  
15  
20  
Figure 25. Settling Time, Gain = 10  
Figure 28. Large Signal Pulse Response and Settling Time, Gain = 100  
Rev. F | Page 12 of 28  
AD524  
–12 TO +12  
–8 TO +8  
–4 TO +4  
1%  
0.1%  
0.01%  
5mV  
10V  
20µs  
OUTPUT  
STEP (V)  
+4 TO –4  
+8 TO –8  
1%  
0.1%  
0.01%  
+12 TO –12  
0
10  
20  
30  
40  
50  
60  
70  
80  
SETTLING TIME (µs)  
Figure 29. Settling Time, Gain = 1000  
Figure 30. Large Signal Pulse Response and Settling Time, Gain = 1000  
Rev. F | Page 13 of 28  
AD524  
TEST CIRCUITS  
10k  
1kΩ  
10kΩ  
0.1%  
0.01% 10T  
V
INPUT  
20V p-p  
OUT  
100kΩ  
0.1%  
+V  
S
1
16  
13  
12  
11  
3
+
RG  
8
AD524  
7
1
G = 10  
G = 100  
10  
6
9
11kΩ  
1k100Ω  
0.1%  
G = 1000  
0.1% 0.1%  
RG  
2
2
–V  
S
Figure 31. Settling Time Test Circuit  
+V  
S
I
I
2
1
V
B
50µA  
50µA  
R52  
20k  
A1  
A2  
C4  
SENSE  
R53  
20kΩ  
+
+
C3  
A3  
V
R57  
O
CH ,  
2
20kΩ  
R56  
20kΩ  
R54  
CH , CH  
3
4
R55  
20kΩ  
20kΩ  
Q1, Q3  
Q2, Q4  
–IN  
4.44kΩ  
REFERENCE  
+IN  
CH  
1
CH , CH ,  
RG  
2
CH  
3
RG  
2
1
404Ω  
40Ω  
4
G = 100  
I
I
3
4
50µA  
G = 1000  
50µA  
CH  
1
–V  
S
Figure 32. Simplified Circuit of Amplifier; Gain Is Defined as  
((R56 + R57)/(RG)) +1; For a Gain of 1, RG Is an Open Circuit  
Rev. F | Page 14 of 28  
 
AD524  
THEORY OF OPERATION  
The AD524 is a monolithic instrumentation amplifier based  
on the classic 3-op amp circuit. The advantage of monolithic  
construction is the closely matched components that enhance  
the performance of the input preamplifier. The preamplifier  
section develops the programmed gain by the use of feedback  
concepts. The programmed gain is developed by varying the  
value of RG (smaller values increase the gain) while the feedback  
forces the collector currents (Q1, Q2, Q3, and Q4) to be constant,  
which impresses the input voltage across RG.  
from excessive currents. Standard practice is to place series  
limiting resistors in each input, but to limit input current to  
below 5 mA with a full differential overload (36 V) requires  
over 7kꢀ of resistance, which adds 10 nV√Hz of noise. To  
provide both input protection and low noise, a special series  
protection FET is used.  
A unique FET design was used to provide a bidirectional  
current limit, thereby protecting against both positive and  
negative overloads. Under nonoverload conditions, three  
channels (CH2, CH3, CH4) act as a resistance (≈1 kΩ) in series  
with the input as before. During an overload in the positive  
direction, a fourth channel, CH1, acts as a small resistance  
(≈3 kΩ) in series with the gate, which draws only the leakage  
current, and the FET limits IDSS. When the FET enhances under  
a negative overload, the gate current must go through the small  
FET formed by CH1 and when this FET goes into saturation,  
the gate current is limited and the main FET goes into controlled  
enhancement. The bidirectional limiting holds the maximum  
input current to 3 mA over the 36 V range.  
As RG is reduced to increase the programmed gain, the  
transconductance of the input preamplifier increases to the  
transconductance of the input transistors. This has three  
important advantages. First, this approach allows the circuit  
to achieve a very high open-loop gain of 3 × 108 at a programmed  
gain of 1000, thus reducing gain-related errors to a negligible  
30 ppm. Second, the gain bandwidth product, which is deter-  
mined by C3 or C4 and the input transconductance, reaches  
25 MHz. Third, the input voltage noise reduces to a value  
determined by the collector current of the input transistors  
for an RTI noise of 7 nV/√Hz at G = 1000.  
INPUT OFFSET AND OUTPUT OFFSET  
INPUT PROTECTION  
Voltage offset specifications are often considered a figure of  
merit for instrumentation amplifiers. While initial offset may  
be adjusted to zero, shifts in offset voltage due to temperature  
variations causes errors. Intelligent systems can often correct  
this factor with an autozero cycle, but there are many small-  
signal high-gain applications that do not have this capability.  
As interface amplifiers for data acquisition systems, instru-  
mentation amplifiers are often subjected to input overloads,  
that is, voltage levels in excess of the full scale for the selected  
gain range. At low gains (10 or less), the gain resistor acts as a  
current limiting element in series with the inputs. At high gains,  
the lower value of RG does not adequately protect the inputs  
+V  
S
1
16  
13  
12  
11  
3
8
AD712  
1µF  
+V  
8
10  
100  
s
10  
6
16.2k  
9
3
2
AD524  
+
1000  
5
6
+
1/2  
1
1/2  
RG  
2
7
1µF  
9.09kΩ  
1kΩ  
4
7
2
+
1µF  
16.2kΩ  
1.82kΩ  
G = 1, 10, 100  
–V  
S
–V  
G = 1000  
S
100Ω  
1.62MΩ  
Figure 33. Noise Test Circuit  
Rev. F | Page 1ꢀ of 28  
 
 
 
AD524  
Voltage offset and drift comprise two components each; input  
and output offset and offset drift. Input offset is the component  
of offset that is directly proportional to gain, that is, input offset  
as measured at the output at G = 100 is 100 times greater than at  
G = 1. Output offset is independent of gain. At low gains, output  
offset drift is dominant, at high gains, input offset drift dominates.  
Therefore, the output offset voltage drift is normally specified as  
drift at G = 1 (where input effects are insignificant), whereas  
input offset voltage drift is given by drift specification at a high  
gain (where output offset effects are negligible). All input  
related numbers are referred to the input (RTI) that is the effect  
on the output is G times larger. Voltage offset vs. power supply  
is also specified at one or more gain settings and is also RTI.  
The AD524 can be configured for gains other than those that  
are internally preset; there are two methods to do this. The first  
method uses just an external resistor connected between  
Pin 3 and Pin 16 (see Figure 35), which programs the gain  
according to the following formula:  
40 kΩ  
RG  
=
G = −1  
For best results, RG should be a precision resistor with a low  
temperature coefficient. An external RG affects both gain  
accuracy and gain drift due to the mismatch between it and  
the internal thin-film resistors. Gain accuracy is determined  
by the tolerance of the external RG and the absolute accuracy  
of the internal resistors ( 20ꢁ). Gain drift is determined by the  
mismatch of the temperature coefficient of RG and the tempera-  
ture coefficient of the internal resistors (−50 ppm/°C typical).  
By separating these errors, one can evaluate the total error  
independent of the gain setting used. In a given gain configura-  
tion, both errors can be combined to give a total error referred  
to the input (RTI) or output (RTO) by the following formulas:  
+V  
S
1
16  
13  
12  
11  
3
–INPUT  
8
RG  
Total error RTI = input error + (output error/gain)  
Total error RTO = (gain × input error) + output error  
1
1.5k  
1kΩ  
10  
6
2.105kΩ  
AD524  
9
V
OUT  
REFERENCE  
+ 1 = 20 ±20%  
As an illustration, a typical AD524 might have a +250 μV  
output offset and a −50 μV input offset. In a unity gain  
configuration, the total output offset would be 200 μV or  
the sum of the two. At a gain of 100, the output offset would  
be −4.75 mV or: +250 μV + 100(−50 μV) = −4.75 mV.  
RG  
2
7
2
+INPUT  
40,000  
2.105  
G =  
–V  
S
Figure 35. Operating Connections for G = 20  
The second method uses the internal resistors in parallel with  
an external resistor (see Figure 36). This technique minimizes  
the gain adjustment range and reduces the effects of tempera-  
ture coefficient sensitivity.  
The AD524 provides for both input and output offset adjustment.  
This simplifies very high precision applications and minimizes  
offset voltage changes in switched gain applications. In such  
applications, the input offset is adjusted first at the highest  
programmed gain, then the output offset is adjusted at G = 1.  
+V  
S
1
16  
13  
12  
11  
3
–INPUT  
8
RG  
GAIN  
1
G = 10  
10  
6
The AD524 has internal high accuracy pretrimmed resistors  
for pin programmable gains of 1, 10, 100, and 1000. One of the  
preset gains can be selected by pin strapping the appropriate  
gain terminal and RG2 together (for G = 1, RG2 is not connected).  
4k  
V
9
AD524  
OUT  
RG  
REFERENCE  
+ 1 = 20 ±17%  
2
7
2
+INPUT  
*R|  
40,000  
4000||4444.44  
G =  
= 4444.44Ω  
= 404.04Ω  
= 40.04Ω  
–V  
S
G = 10  
*R|  
INPUT  
OFFSET  
NULL  
+V  
S
G = 100  
*R|  
G = 1000  
*NOMINAL (±20%)  
8
10kΩ  
1
16  
13  
12  
11  
3
–INPUT  
4
Figure 36. Operating Connections for G = 20, Low Gain  
Temperature Coefficient Technique  
RG  
1
5
G = 10  
G = 100  
10  
6
V
9
AD524  
OUT  
G = 1000  
RG  
2
OUTPUT  
SIGNAL  
COMMON  
7
2
+INPUT  
–V  
S
Figure 34. Operating Connections for G = 100  
Rev. F | Page 16 of 28  
 
 
 
AD524  
+V  
8
S
The AD524 can also be configured to provide gain in the output  
stage. Figure 37 shows an H pad attenuator connected  
to the reference and sense lines of the AD524. R1, R2, and R3  
should be made as low as possible to minimize the gain variation  
and reduction of CMRR. Varying R2 precisely sets the gain  
without affecting CMRR. CMRR is determined by the match  
of R1 and R3.  
2
3
+
11  
12  
13  
16  
1
10  
6
9
AD524  
7
LOAD  
–V  
S
TO POWER  
SUPPLY  
+V  
S
GROUND  
R1  
2.26kΩ  
1
16  
13  
12  
11  
3
–INPUT  
Figure 40. Indirect Ground Returns for Bias Currents–AC-Coupled  
8
RG  
1
R2  
G = 10  
G = 100  
Although instrumentation amplifiers have differential inputs,  
there must be a return path for the bias currents. If this is not  
provided, those currents charge stray capacitances, causing the  
output to drift uncontrollably or to saturate. Therefore, when  
amplifying floating input sources such as transformers and  
thermocouples, as well as ac-coupled sources, there must still  
be a dc path from each input to ground.  
10  
6
5kΩ  
V
9
AD524  
OUT  
G = 1000  
R
L
RG  
2
7
R3  
2.26kΩ  
2
+INPUT  
(R2||40k) + R1 + R3  
(R2||40k)  
–V  
S
G =  
(R1 + R2 + R3)||R 2kΩ  
L
Figure 37. Gain of 2000  
Table 4. Output Gain Resistor Values  
COMMON-MODE REJECTION  
Output Gain  
R2  
R., Rꢀ  
Nominal Gain  
Common-mode rejection is a measure of the change in output  
voltage when both inputs are changed equal amounts. These  
specifications are usually given for a full-range input voltage  
change and a specified source imbalance. Common-mode  
rejection ratio (CMRR) is a ratio expression whereas common-  
mode rejection (CMR) is the logarithm of that ratio. For  
example, a CMRR of 10,000 corresponds to a CMR of 80 dB.  
2
10  
ꢀ kΩ  
1.0ꢀ kΩ  
1 kΩ  
2.26 kΩ  
2.0ꢀ kΩ  
4.42 kΩ  
2.02  
ꢀ.01  
10.1  
INPUT BIAS CURRENTS  
Input bias currents are those currents necessary to bias the  
input transistors of a dc amplifier. Bias currents are an  
additional source of input error and must be considered in  
a total error budget. The bias currents, when multiplied by  
the source resistance, appear as an offset voltage. What is of  
concern in calculating bias current errors is the change in bias  
current with respect to signal voltage and temperature. Input  
offset current is the difference between the two input bias  
currents. The effect of offset current is an input offset voltage  
whose magnitude is the offset current times the source  
impedance imbalance.  
In an instrumentation amplifier, ac common-mode rejection is  
only as good as the differential phase shift. Degradation of ac  
common-mode rejection is caused by unequal drops across  
differing track resistances and a differential phase shift due  
to varied stray capacitances or cable capacitances. In many  
applications, shielded cables are used to minimize noise. This  
technique can create common-mode rejection errors unless the  
shield is properly driven. Figure 41 and Figure 42 show active  
data guards that are configured to improve ac common-mode  
rejection by bootstrapping the capacitances of the input cabling,  
thus minimizing differential phase shift.  
+V  
S
2
3
+
8
+V  
S
–INPUT  
G = 100  
10  
6
11  
12  
13  
16  
1
1
12  
3
8
AD524  
9
10  
6
100  
AD711  
9
7
AD524  
V
LOAD  
RG  
2
OUT  
–V  
S
+INPUT  
REFERENCE  
7
TO POWER  
SUPPLY  
GROUND  
2
+
–V  
S
Figure 38. Indirect Ground Returns for Bias Currents—Transformer Coupled  
Figure 41. Shield Driver, G ≥ 100  
+V  
S
+V  
S
–INPUT  
RG  
1
2
3
+
8
AD712  
1
8
100  
16  
11  
12  
13  
16  
1
10  
6
10  
6
AD524  
9
12  
3
9
V
AD524  
OUT  
–V  
S
7
LOAD  
REFERENCE  
100Ω  
RG  
7
2
2
+
–V  
S
+INPUT  
TO POWER  
SUPPLY  
GROUND  
–V  
S
Figure 42. Differential Shield Driver  
Figure 39. Indirect Ground Returns for Bias Currents—Thermocouple  
Rev. F | Page 17 of 28  
 
 
 
 
 
AD524  
GROUNDING  
SENSE TERMINAL  
Many data acquisition components have two or more ground  
pins that are not connected together within the device. These  
grounds must be tied together at one point, usually at the system  
power-supply ground. Ideally, a single solid ground would be  
desirable. However, because current flows through the ground  
wires and etch stripes of the circuit cards, and because these  
paths have resistance and inductance, hundreds of millivolts can  
be generated between the system ground point and the data  
acquisition components. Separate ground returns should be  
provided to minimize the current flow in the path from the  
sensitive points to the system ground point. In this way, supply  
currents and logic-gate return currents are not summed into the  
same return path as analog signals where they would cause  
measurement errors.  
The sense terminal is the feedback point for the instrument  
amplifiers output amplifier. Normally, it is connected to the  
instrument amplifier output. If heavy load currents are to be  
drawn through long leads, voltage drops due to current flowing  
through lead resistance can cause errors. The sense terminal can  
be wired to the instrument amplifier at the load, thus putting  
the IxR drops inside the loop and virtually eliminating this  
error source.  
V+  
(SENSE)  
OUTPUT  
CURRENT  
V
+
2
3
8
IN  
BOOSTER  
10  
6
9
X1  
AD524  
12  
1
R
L
7
(REF)  
V
IN  
V–  
Because the output voltage is developed with respect to the  
potential on the reference terminal, an instrumentation  
amplifier can solve many grounding problems.  
Figure 44. AD524 Instrumentation Amplifier with Output Current Booster  
Typically, IC instrumentation amplifiers are rated for a full  
10 volt output swing into 2 kΩ. In some applications, however,  
the need exists to drive more current into heavier loads.  
Figure 44 shows how a high current booster may be connected  
inside the loop of an instrumentation amplifier to provide the  
required current boost without significantly degrading overall  
performance. Nonlinearities and offset and gain inaccuracies of  
the buffer are minimized by the loop gain of the AD524 output  
amplifier. Offset drift of the buffer is similarly reduced.  
ANALOG P.S.  
+15V –15V  
DIGITAL P.S.  
+5V  
C
C
0.1 0.1  
µF µF  
0.1 0.1  
µF µF  
1µF 1µF  
1µF  
DIG  
COM  
8
7
7
9
11 15  
1
2
1
10  
AD583  
DIGITAL  
DATA  
OUTPUT  
9
AD524  
AD574A  
SAMPLE  
AND HOLD  
REFERENCE TERMINAL  
6
The reference terminal can be used to offset the output by up to  
10 V. This is useful when the load is floating or does not share  
a ground with the rest of the system. It also provides a direct  
means of injecting a precise offset. It must be remembered that  
the total output swing is 10 V to be shared between signal and  
reference offset.  
ANALOG  
GROUND*  
OUTPUT  
REFERENCE  
SIGNAL  
GROUND  
*IF INDEPENDENT; OTHERWISE, RETURN AMPLIFIER REFERENCE  
TO MECCA AT ANALOG P.S. COMMON.  
Figure 43. Basic Grounding Practice  
When the AD524 is of the 3-amplifier configuration it  
is necessary that nearly zero impedance be presented to the  
reference terminal.  
Any significant resistance from the reference terminal to  
ground increases the gain of the noninverting signal path,  
thereby upsetting the common-mode rejection of the AD524.  
In the AD524, a reference source resistance unbalances the CMR  
trim by the ratio of 20 kΩ/RREF. For example, if the reference  
source impedance is 1 Ω, CMR is reduced to 86 dB (20 kΩ/1 Ω  
= 86 dB). An operational amplifier can be used to provide that  
low impedance reference point, as shown in Figure 45. The  
input offset voltage characteristics of that amplifier adds directly  
to the output offset voltage performance of the instrumentation  
amplifier.  
Rev. F | Page 18 of 28  
 
 
 
AD524  
+V  
8
S
SENSE  
2
3
+INPUT  
–INPUT  
+
10  
SENSE  
10  
V
+
2
3
IN  
R1  
9
AD524  
I
L
V
X
9
13  
1
AD524  
6
12  
1
6
LOAD  
REF  
7
REF  
V
IN  
A2  
AD711  
–V  
S
LOAD  
V
V
IN  
40,000  
V
X
OFFSET  
AD711  
I
=
=
=
(1 +  
)
L
R1  
R1  
R
G
Figure 45. Use of Reference Terminal to Provide Output Offset  
Figure 46. Voltage-to-Current Converter  
An instrumentation amplifier can be turned into a voltage-  
to-current converter by taking advantage of the sense and  
reference terminals, as shown in Figure 46.  
By establishing a reference at the low side of a current setting  
resistor, an output current may be defined as a function of input  
voltage, gain, and the value of that resistor. Because only a small  
current is demanded at the input of the buffer amplifier (A2)  
the forced current, IL, largely flows through the load. Offset and  
drift specifications of A2 must be added to the output offset and  
drift specifications of the AD524.  
1
16  
15  
14  
13  
12  
11  
10  
9
–IN  
+IN  
PROTECTION  
PROTECTION  
OUTPUT  
OFFSET  
TRIM  
G = 100  
K2  
G = 1000  
K3  
G = 10  
K1  
2
3
4
5
6
7
8
NC  
R2  
+V  
S
10k  
INPUT  
OFFSET  
TRIM  
4.44k  
404Ω  
40Ω  
R1  
10kΩ  
RELAY  
SHIELDS  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
+5V  
20kΩ  
–V  
S
A1  
AD524  
K1  
D1  
K2  
D2  
K3  
D3  
OUT  
+V  
S
1µF  
35V  
C2  
C1  
INPUTS  
GAIN  
A
B
1
2
3
4
5
6
7
16  
1
2
3
4
5
6
7
16  
K1 – K3 =  
Y0  
Y1  
Y2  
ANALOG  
COMMON  
THERMOSEN DM2C  
4.5V COIL  
RANGE  
15  
D1 – D3 = IN4148  
14  
13  
7407N  
BUFFER  
DRIVER  
74LS138  
DECODER  
GAIN TABLE  
10µF  
A
B
GAIN  
10  
1000  
100  
1
0
0
1
1
0
1
0
1
+5V  
LOGIC  
COMMON  
NC = NO CONNECT  
Figure 47. Three-Decade Gain Programmable Amplifier  
Rev. F | Page 19 of 28  
 
 
 
AD524  
PROGRAMMABLE GAIN  
+INPUT  
PROTECTION  
4.44k  
1
(–INPUT)  
Figure 47 shows the AD524 being used as a software program-  
mable gain amplifier. Gain switching can be accomplished with  
mechanical switches such as DIP switches or reed relays. It should  
be noted that the on resistance of the switch in series with the  
internal gain resistor becomes part of the gain equation and has  
an effect on gain accuracy.  
AD524  
G = 10 13  
404Ω  
G = 100 12  
V
b
20kΩ  
40Ω  
10  
G = 1000  
11  
20kΩ  
20kΩ  
20kΩ  
16  
3
RG  
RG  
1
2
9
6
V
OUT  
20kΩ  
20kΩ  
The AD524 can also be connected for gain in the output stage.  
Figure 48 shows an AD711 used as an active attenuator in the  
output amplifiers feedback loop. The active attenuation presents  
very low impedance to the feedback resistors, therefore  
minimizing the common-mode rejection ratio degradation.  
–INPUT  
2
PROTECTION  
(+INPUT)  
+V  
S
1/2  
AD712  
17  
3
2
1
4
14  
7
DAC A  
DB0  
DB7  
DATA  
INPUTS  
256:1  
(+INPUT)  
15  
16  
6
CS  
1
2
3
4
16  
15  
14  
13  
12  
11  
10  
9
–IN  
+IN  
PROTECTION  
PROTECTION  
AD7528  
OUTPUT  
OFFSET  
NULL  
WR  
(–INPUT)  
19  
20  
DAC A/DAC B  
TO –V  
+V  
18  
S
DAC B  
5
R2  
10k  
1/2  
AD712  
INPUT  
OFFSET  
NULL  
4.44k  
10kΩ  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
404Ω  
40Ω  
5
6
7
8
20kΩ  
Figure 49. Programmable Output Gain Using a DAC  
+
Another method for developing the switching scheme is to  
use a DAC. The AD7528 dual DAC, which acts essentially as  
a pair of switched resistive attenuators having high analog  
linearity and symmetrical bipolar transmission, is ideal in this  
application. The multiplying DACs advantage is that it can  
handle inputs of either polarity or zero without affecting the  
programmed gain. The circuit shown uses an AD7528 to set  
the gain (DAC A) and to perform a fine adjustment (DAC B).  
20kΩ  
–V  
S
AD524  
+V  
S
V
OUT  
1µF  
35V  
20kΩ  
10pF  
V
V
DD GND  
SS  
+V  
–V  
S
1
8
16  
2
15  
13  
11  
+
39.2kΩ  
28.7kΩ  
316kΩ  
1kΩ  
14  
12  
AD711  
1kΩ  
1kΩ  
AUTOZERO CIRCUITS  
S
9
10  
AD7590  
In many applications, it is necessary to provide very accurate  
data in high gain configurations. At room temperature, the  
offset effects can be nulled by the use of offset trim potenti-  
ometers. Over the operating temperature range, however,  
offset nulling becomes a problem. The circuit of Figure 50  
shows a CMOS DAC operating in bipolar mode and connected  
to the reference terminal to provide software controllable offset  
adjustments.  
3
4
5
6
7
V
A2 A3 A4 WR  
DD  
Figure 48. Programmable Output Gain  
Rev. F | Page 20 of 28  
 
 
 
AD524  
+V  
+V  
8
S
S
+10V  
2
16  
13  
12  
11  
3
+INPUT  
+
8
10k  
RG  
1
2
16  
13  
12  
11  
3
4
+
350Ω  
350Ω  
350Ω  
350Ω  
G = 10  
10  
6
RG  
1
5
9
G = 100  
14-BIT  
ADC  
0V TO 2V  
F.S.  
AD524  
10  
6
G = 100  
9
AD524C  
G = 1000  
RG  
2
7
RG  
2
1
–INPUT  
7
1
–V  
S
39kΩ  
V
REF  
16  
–V  
S
–V  
S
R3  
AD589  
+V  
S
R5  
20kΩ  
20kΩ  
C1  
15  
14  
+V  
Figure 52. Typical Bridge Application  
MSB  
4
S
1/2  
AD712  
DATA  
INPUTS  
R4  
10kΩ  
OUT1  
OUT2  
2
3
LSB  
11  
1
2
+
8
ERROR BUDGET ANALYSIS  
AD7524  
6
5
+
1
7
12  
13  
CS  
To illustrate how instrumentation amplifier specifications are  
applied, review a typical case where an AD524 is required to  
amplify the output of an unbalanced transducer. Figure 52  
shows a differential transducer, unbalanced by 100 Ω, supplying  
a 0 mV to 20 mV signal to an AD524C. The output of the IA  
feeds a 14-bit ADC with a 0 V to 2 V input voltage range. The  
operating temperature range is −25°C to +85°C. Therefore, the  
largest change in temperature, ΔT, within the operating range is  
from ambient to +85°C (85°C − 25°C = 60°C).  
4
1/2  
AD712  
WR  
R6  
5kΩ  
3
–V  
S
GND  
Figure 50. Software Controllable Offset  
In many applications, complex software algorithms for autozero  
applications are not available. For those applications, Figure 51  
provides a hardware solution.  
+V  
S
+
2
In many applications, differential linearity and resolution are of  
prime importance in cases where the absolute value of a variable is  
less important than changes in value. In these applications, only  
the irreducible errors (45 ppm = 0.004ꢁ) are significant. Further-  
more, if a system has an intelligent processor monitoring the  
analog-to-digital output, the addition of an autogain/autozero  
cycle removes all reducible errors and may eliminate the require-  
ment for initial calibration. This also reduces errors to 0.004ꢁ.  
8
15 16  
RG  
16  
13  
12  
11  
3
1
10  
6
V
14  
13  
OUT  
9
AD524  
9
10  
0.1µF LOW  
LEAKAGE  
CH  
RG  
2
7
1
1kΩ  
+
–V  
S
12 11  
AD711  
V
8
1
2
DD  
V
AD7510KD  
SS  
GND  
A1  
A2  
A3  
A4  
200µs  
ZERO PULSE  
Figure 51. Autozero Circuit  
Rev. F | Page 21 of 28  
 
 
 
 
AD524  
Table 5. Error Budget Analysis  
Effect on  
Absolute  
Accuracy  
Effect on  
Absolute  
Accuracy  
Effect  
on  
Resolution  
AD524C  
Specifications Calculation  
Error Source  
at TA = 25°C at TA = 85°C  
Gain Error  
Gain Instability  
Gain Nonlinearity  
Input Offset Voltage  
Input Offset Voltage Drift  
0.2ꢀ%  
2ꢀ ppm  
0.003%  
ꢀ0 μV, RTI  
0.ꢀ μV/°C  
0.2ꢀ% = 2ꢀ00 ppm  
(2ꢀ ppm/°C)(60°C) = 1ꢀ00 ppm  
0.003% = 30 ppm  
ꢀ0 μV/20 mV = 2ꢀ00 ppm  
( 0.ꢀ μV/°C)(60°C) = 30 μV  
30 μV/20 mV = 1ꢀ00 ppm  
2ꢀ00 ppm  
2ꢀ00 ppm  
2ꢀ00 ppm  
1ꢀ00 ppm  
2ꢀ00 ppm  
1ꢀ00 ppm  
30 ppm  
Output Offset Voltage1  
Output Offset Voltage Drift1  
2.0 mV  
2ꢀ μV/°C  
2.0 mV/20 mV = 1000 ppm  
( 2ꢀ μV/°C)(60°C)= 1ꢀ00 μV  
1ꢀ00 μV/20 mV = 7ꢀ0 ppm  
1000 ppm  
1000 ppm  
7ꢀ0 ppm  
Bias Current-Source  
Imbalance Error  
1ꢀ nA  
( 1ꢀ nA)(100 Ω ) = 1.ꢀ μV  
1.ꢀ μV/20 mV = 7ꢀ ppm  
7ꢀ ppm  
7ꢀ ppm  
30 ppm  
ꢀ0 ppm  
30 ppm  
87.ꢀ ppm  
ꢀ0 ppm  
444 ppm  
Bias Current-Source  
Imbalance Drift  
100 pA/°C  
10 nA  
( 100 pA/°C)(100 Ω )(60°C) = 0.6 μV  
0.6 μV/20 mV = 30 ppm  
Offset Current-Source  
Imbalance Error  
( 10 nA)(100 Ω ) = 1 μV  
1 μV/20 mV = ꢀ0 ppm  
ꢀ0 ppm  
Offset Current-Source  
Imbalance Drift  
100 pA/°C  
10 nA  
(100 pA/°C)(100 Ω )(60°C) = 0.6 μV  
0.6 μV/20 mV = 30 ppm  
Offset Current-Source  
Resistance-Error  
(10 nA)(17ꢀ Ω ) = 3.ꢀ μV  
3.ꢀ μV/20 mV = 87.ꢀ ppm  
87.ꢀ ppm  
Offset Current-Source  
Resistance-Drift  
100 pA/°C  
11ꢀ dB  
(100 pA/°C)(17ꢀ Ω )(60°C) = 1 μV  
1 μV/20 mV = ꢀ0 ppm  
Common Mode Rejection ꢀ V DC  
11ꢀ dB = 1.8 ppm × ꢀ V = 8.8 μV  
8.8 μV/20 mV = 444 ppm  
444 ppm  
Noise, RTI (0.1 Hz to 10 Hz)  
0.3 μV p-p  
0.3 μV p-p/20 mV = 1ꢀ ppm  
Total Error  
1ꢀ ppm  
66ꢀ6.ꢀ ppm  
10ꢀ16.ꢀ ppm 4ꢀ ppm  
1 Output offset voltage and output offset voltage drift are given as RTI figures.  
Rev. F | Page 22 of 28  
 
 
AD524  
Figure 53 shows a simple application in which the variation  
of the cold-junction voltage of a Type J thermocouple-iron  
constantan is compensated for by a voltage developed in series  
by the temperature-sensitive output current of an AD590  
semiconductor temperature sensor.  
Other thermocouple types may be accommodated with the  
standard resistance values shown in Table 5. For other ranges  
of ambient temperature, the equation in Figure 53 may be  
solved for the optimum values of RT and RA.  
The microprocessor controlled data acquisition system shown  
in Figure 54 includes both autozero and autogain capability. By  
dedicating two of the differential inputs, one to ground and one  
to the A/D reference, the proper program calibration cycles can  
eliminate both initial accuracy errors and accuracy errors over  
temperature. The autozero cycle, in this application, converts a  
number that appears to be ground and then writes that same  
number (8-bit) to the AD7524, which eliminates the zero error.  
Because its output has an inverted scale, the autogain cycle  
converts the A/D reference and compares it with full scale. A  
multiplicative correction factor is then computed and applied  
to subsequent readings.  
R
A
REFERENCE  
JUNCTION  
NOMINAL  
VALUE  
+V  
S
7.5V  
TYPE  
+15°C < T < +35°C  
A
J
K
52.3  
41.2Ω  
61.4Ω  
40.2Ω  
5.76Ω  
I
A
2.5V  
T
A
AD580  
E
G = 100  
+V  
V
AD590  
CU  
T
A
S AD524  
S, R  
+
R
A
IRON  
E
O
52.3Ω  
V
CONSTANTAN  
T
MEASURING  
JUNCTION  
8.66kΩ  
1kΩ  
52.3I + 2.5V  
–V  
A
S
E
= V – V +  
T A  
– 2.5V  
O
R
T
52.3Ω  
OUTPUT  
AMPLIFIER  
OR METER  
1 +  
R
~
= V  
T
NOMINAL VALUE  
9135Ω  
For a comprehensive study of instrumentation amplifier  
design and applications, refer to the Designer’s Guide to  
Instrumentation Amplifiers (3rd Edition), available free from  
Analog Devices, Inc.  
Figure 53. Cold-Junction Compensation  
The circuit is calibrated by adjusting RT for proper output  
voltage with the measuring junction at a known reference  
temperature and the circuit near 25°C. If resistors with low  
temperature coefficients are used, compensation accuracy is  
to within 0.5°C, for temperatures between +15°C and +35°C.  
2
+
V
REF  
AD583  
16  
13  
12  
11  
3
RG  
RG  
2
1
10  
6
AD7507  
V
AD524  
9
AD574A  
IN  
AGND  
1
–V  
REF  
A0, A2,  
EN, A1  
20k  
20kΩ  
+
10kΩ  
+
AD7524  
1/2  
1/2  
AD712  
AD712  
5kΩ  
DECODE  
LATCH  
CONTROL  
MICRO-  
PROCESSOR  
ADDRESS BUS  
Figure 54. Microprocessor Controlled Data Acquisition System  
Rev. F | Page 23 of 28  
 
 
AD524  
OUTLINE DIMENSIONS  
0.005 (0.13) MIN  
16  
0.080 (2.03) MAX  
9
0.310 (7.87)  
PIN 1  
1
0.220 (5.59)  
8
0.320 (8.13)  
0.290 (7.37)  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 55. 16-Lead Side-Brazed Ceramic Dual In-Line [SBDIP]  
(D-16)  
Dimensions shown in inches and (millimeters)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 56. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20)  
Dimensions shown in inches and (millimeters)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.00  
98)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 57. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 24 of 28  
 
AD524  
ORDERING GUIDE  
Model  
ADꢀ24AD  
ADꢀ24ADZ1  
Temperature Range  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
Package Description  
16-Lead SBDIP  
16-Lead SBDIP  
Package Option  
D-16  
D-16  
E-20  
ADꢀ24AE  
20-Terminal LCC  
ADꢀ24AR-16  
ADꢀ24AR-16-REEL  
ADꢀ24AR-16-REEL7  
ADꢀ24ARZ-161  
ADꢀ24ARZ-16-REEL71  
ADꢀ24BD  
ADꢀ24BDZ1  
ADꢀ24BE  
ADꢀ24CD  
ADꢀ24CDZ1  
16-Lead SOIC_W  
16-Lead SOIC_W, 13" Tape and Reel  
16-Lead SOIC_W, 7" Tape and Reel  
16-Lead SOIC_W  
16-Lead SOIC_W, 7”Tape and Reel  
16-Lead SBDIP  
16-Lead SBDIP  
20-Terminal LCC  
16-Lead SBDIP  
16-Lead SBDIP  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
D-16  
D-16  
E-20  
D-16  
D-16  
D-16  
D-16  
D-16  
E-20  
ADꢀ24SD  
16-Lead SBDIP  
16-Lead SBDIP  
16-Lead SBDIP  
20-Terminal LCC  
ADꢀ24SD/883B  
ꢀ962-88ꢀ3901EA2  
ADꢀ24SE/883B  
ADꢀ24SCHIPS  
Die  
1 Z = RoHS Compliant Part.  
2 Refer to the official DESC drawing for tested specifications.  
Rev. F | Page 2ꢀ of 28  
 
 
AD524  
NOTES  
Rev. F | Page 26 of 28  
AD524  
NOTES  
Rev. F | Page 27 of 28  
AD524  
NOTES  
©2±±7 Analog Devices, Inc0 All rights reserved0 Trademarks and  
registered trademarks are the property of their respective owners0  
D±±5±±-±-../±7(F)  
Rev. F | Page 28 of 28  

相关型号:

5962-8853901VEA

Instrumentation Amp, Pin-Programmable
ETC

5962-88540012A

HEX INVERTERS WITH OPEN-COLLECTOR OUTPUTS
TI

5962-88540012X

Hex Inverter
ETC

5962-8854001CA

HEX INVERTERS WITH OPEN-COLLECTOR OUTPUTS
TI

5962-8854001CA

ALS SERIES, HEX 1-INPUT INVERT GATE, CDIP14, 0.300 INCH, CERAMIC, DIP-14
ROCHESTER

5962-8854001CX

Hex Inverter
ETC

5962-8854001DA

HEX INVERTERS WITH OPEN-COLLECTOR OUTPUTS
TI

5962-8854001DX

Hex Inverter
ETC