ACT8840QM17A-T [ACTIVE-SEMI]

Advanced PMU for Single-core Application Processors;
ACT8840QM17A-T
型号: ACT8840QM17A-T
厂家: ACTIVE-SEMI, INC    ACTIVE-SEMI, INC
描述:

Advanced PMU for Single-core Application Processors

文件: 总38页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACT8840  
Rev 1, 07-Feb-14  
Advanced PMU for Single-core Application Processors  
FEATURES  
GENERAL DESCRIPTION  
The ACT8840 is a complete, cost effective, and  
highly-efficient ActivePMUTM power management  
solution optimized for the power, voltage  
sequencing and control requirements of general  
Single-core application processor.  
INTEGRATED POWER SUPPLIES  
Four DC/DC Step-Down (Buck) Regulators  
2 x 1.8A, 2 x 1.3A  
Five Low-Noise LDOs  
2 x 150mA, 3 x 350mA  
The ACT8840 features four fixed-frequency,  
current-mode, synchronous PWM step-down  
converters that achieve peak efficiencies of up to  
97%. These regulators operate with a fixed  
frequency of 2.25MHz, minimizing noise in sensitive  
applications and allowing the use of small external  
components. These buck regulators supply up to  
1.8A of output current and can fully satisfy the  
power and control requirements of the single-core  
application processor. Dynamic Voltage Scaling  
(DVS) is supported either by dedicated control pins,  
or through I2C interface to optimize the energy-per-  
task performance for the processor. This device  
also include eight low-noise LDOs (up to 350mA  
per LDO), one always-ON LDO and an integrated  
backup battery charger to provide a complete  
power system for the processor.  
Three Low-Input Voltage LDOs  
1 x 150mA, 2 x 350mA  
One Low IQ Keep-Alive LDO  
Backup Battery Charger  
SYSTEM CONTROL AND INTERFACE  
Six General Purpose I/O with PWM Drivers  
I2C Serial Interface  
Interrupt Controller  
SYSTEM MANAGEMENT  
Reset Interface and Sequencing Controller  
Power on Reset  
Soft / Hard Reset  
Watchdog Supervision  
Multiple Sleep Modes  
The power sequence and reset controller provides  
power-on reset, SW-initiated reset, and power cycle  
reset for the processor. It also features the  
watchdog supervisory function. Multiple sleep  
modes with autonomous sleep and wake-up  
sequence control are supported.  
Thermal Management Subsystem  
The thermal management and protection  
subsystem allows the host processor to manage the  
power dissipation of the PMU and the overall  
system dynamically. The PMU provides a thermal  
warning to the host processor when the  
temperature reaches a certain threshold such that  
the system can turn off some of the non-essential  
functions, reduce the clock frequency and etc to  
manage the system temperature.  
APPLICATIONS  
Tablet PC  
Mobile Internet Devices (MID)  
Ebooks  
Personal Navigation Devices  
The ACT8840 is available in a compact, Pb-Free  
and RoHS-compliant TQFN66-48 package.  
Innovative PowerTM  
- 1 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
TABLE OF CONTENTS  
General Information.....................................................................................................................................p. 01  
Functional Block Diagram............................................................................................................................p. 03  
Ordering Information....................................................................................................................................p. 04  
Pin Configuration .........................................................................................................................................p. 04  
Pin Descriptions...........................................................................................................................................p. 05  
Absolute Maximum Ratings.........................................................................................................................p. 07  
I2C Interface Electrical Characteristics ........................................................................................................p. 08  
Global Register Map....................................................................................................................................p. 09  
Register and Bit Descriptions ......................................................................................................................p. 11  
System Control Electrical Characteristics....................................................................................................p. 17  
Step-Down DC/DC Electrical Characteristics..............................................................................................p. 18  
Low-Noise LDO Electrical Characteristics...................................................................................................p. 19  
Low-Input Voltage LDO Electrical Characteristics.......................................................................................p. 20  
Low-Power (Always-On) LDO Electrical Characteristics.............................................................................p. 21  
PWM LED Driver Electrical Characteristics.................................................................................................p. 21  
Typical Performance Characteristics……………………………………………………………………………..p. 22  
System Control Information .........................................................................................................................p. 28  
Interfacing with the Telechips TCC88xx Processors .......................................................................p. 28  
Control Signals.................................................................................................................................p. 29  
Push-Button Control.........................................................................................................................p. 30  
Control Sequences...........................................................................................................................p. 30  
Watch-Dog Supervision ...................................................................................................................p. 30  
Software-Initiated Power Cycle........................................................................................................p. 30  
Functional Description .................................................................................................................................p. 32  
I2C Interface .....................................................................................................................................p. 32  
Housekeeping Functions..................................................................................................................p. 32  
Thermal Protection...........................................................................................................................p. 32  
Step-Down DC/DC Regulators ....................................................................................................................p. 33  
General Description..........................................................................................................................p. 33  
100% Duty Cycle Operation.............................................................................................................p. 33  
Operating Mode................................................................................................................................p. 33  
Synchronous Rectification................................................................................................................p. 33  
Soft-Start ..........................................................................................................................................p. 33  
Compensation ..................................................................................................................................p. 33  
Configuration Options.......................................................................................................................p. 33  
OK[ ] and Output Fault Interrupt.......................................................................................................p. 34  
PCB Layout Considerations.............................................................................................................p. 34  
Low-Noise, Low-Dropout Linear Regulators................................................................................................p. 35  
General Description..........................................................................................................................p. 35  
Output Current Limit.........................................................................................................................p. 35  
Compensation ..................................................................................................................................p. 35  
Configuration Options.......................................................................................................................p. 35  
OK[ ] and Output Fault Interrupt.......................................................................................................p. 35  
PCB Layout Considerations.............................................................................................................p. 35  
Always-On LDO (REG13)............................................................................................................................p. 36  
General Description..........................................................................................................................p. 36  
Reverse-Current Protection .............................................................................................................p. 36  
Typical Application ...........................................................................................................................p. 36  
PWM LED Drivers........................................................................................................................................p. 37  
PWM Frequence Selection ..............................................................................................................p. 37  
PWM Duty Cycle Selection ..............................................................................................................p. 37  
TQFN66-48 Package Outline and Dimensions ...........................................................................................p. 38  
Innovative PowerTM  
- 2 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
FUNCTIONAL BLOCK DIAGRAM  
Innovative PowerTM  
- 3 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
ORDERING INFORMATIONc  
PART NUMBER VOUT1 VOUT2 VOUT3 VOUT4 VOUT5 VOUT6 VOUT7 VOUT8 VOUT9 VOUT10 VOUT11 VOUT12 VOUT13  
ACT8840QM188-T 3.3V 1.25V 1.8V 1.1V 1.1V 1.1V 3.3V 1.1V 2.8V 3.3V 1.8V 3.3V  
ACT8840QM244-T 1.5V 1.25V 1.2V 3.0V 3.0V 3.3V 3.3V 3.3V 1.2V 1.2V 1.8V 1.8V  
3.0V  
3.3V  
PACKAGE  
PINS TEMPERATURE RANGE  
48 -40°C to +85°C  
TQFN66-48  
c: All Active-Semi components are RoHS Compliant and with Pb-free plating unless specified differently. The term Pb-free means  
semiconductor products that are in compliance with current RoHS (Restriction of Hazardous Substances) standards.  
2: The Power Domains and Power Control Sequence… etc. in this Data Sheet are all described to support ACT8840QM188-T.  
ACT8840QM244-T is programmed for TCC88xx Applications; please refer to its appendix.  
ACT8840QM_ __-T  
Active-Semi  
Product Number  
Package Code  
Pin Count  
Option Code  
Tape and Reel  
PIN CONFIGURATION  
TOP VIEW  
Thin - QFN (TQFN66-48)  
Innovative PowerTM  
- 4 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
PIN DESCRIPTIONS  
PIN  
1, 2  
3
NAME  
DESCRIPTION  
SW3  
Switch Node for REG3.  
Power Ground for REG3. Connect GP14, GP2, GP3, and GA together at a single  
point as close to the IC as possible.  
GP3  
4
OUT10  
OUT11  
INL3  
REG10 output. Bypass it to ground with a 2.2µF capacitor.  
REG11 output. Bypass it to ground with a 2.2µF capacitor.  
Power input for REG10, REG11 and REG12.  
5
6
7
OUT12  
REG12 output. Bypass it to ground with a 2.2µF capacitor.  
Output Voltage Selection for REG2 and REG4. Drive to logic low to select default  
output voltage. Drive to logic high to select secondary output voltage.  
8
9
VSEL  
Active-Low Open-Drain Push-Button Status Output. nPBSTAT is asserted low  
whenever the nPBIN is pushed, and is high-Z otherwise.  
nPBSTAT  
Power ground for REG2. Connect GP14, GP2, GP3, and GA together at a single  
point as close to the IC as possible.  
10  
GP2  
SW2  
VP2  
11, 12  
13, 14  
Switch Node for REG2.  
Power input for REG2. Bypass to GP2 with a high quality ceramic capacitor placed as  
close to the IC as possible.  
15  
16  
17  
OUT2  
PWREN  
REFBP  
Output Voltage Sense for REG2.  
Power enable input.  
Reference Bypass. Connect a 0.047μF ceramic capacitor from REFBP to GA. This  
pin is discharged to GA in shutdown.  
18  
19  
20  
21  
22  
23  
24  
25  
INL2  
OUT9  
GA  
Power Input for REG8, REG9.  
REG9 output. Bypass it to ground with a 2.2µF capacitor.  
Analog Ground.  
OUT4  
OUT8  
SDA  
SCL  
Output voltage sense for REG4.  
REG8 output. Bypass it to ground with a 2.2µF capacitor.  
Data Input for I2C Serial Interface. Data is read on the rising edge of SCL.  
Clock Input for I2C Serial Interface.  
Power input for REG4. Bypass to GP14 with a high quality ceramic capacitor placed  
as close to the IC as possible.  
VP4  
Innovative PowerTM  
- 5 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
PIN DESCRIPTIONS CONT’D  
PIN  
NAME  
DESCRIPTION  
26  
SW4  
Switch Node for REG4.  
Power Ground for REG1 and REG4. Connect GP14, GP2, GP3, and GA together at a  
single point as close to the IC as possible.  
27  
GP14  
28  
29  
SW1  
Switch Node for REG1.  
OUT1  
Output Voltage Sense for REG1.  
Power Input for REG1. Bypass to GP14 with a high quality ceramic capacitor placed  
as close to the IC as possible.  
30  
31  
VP1  
Master Enable Input. Drive nPBIN to GA through a 50kresistor to enable the IC,  
drive nPBIN directly to GA to assert a Manual-Reset condition.  
nPBIN  
32  
33  
34  
PWRHLD  
nRSTO  
nIRQ  
Power hold Input.  
Open-Drain Reset Output.  
Open-Drain Interrupt Output.  
General Purpose I/O #6. Configured as PWM LED driver output for up to 6mA current  
with programmable frequency and duty cycle. See the PWM LED Drive section for  
more information.  
35  
36  
GPIO6  
GPIO5  
General Purpose I/O #5. Configured as PWM LED driver output for up to 6mA current  
with programmable frequency and duty cycle. See the PWM LED Driver section for  
more information.  
37  
38  
OUT13  
OUT7  
REG13 output. Bypass it to ground with a 2.2µF capacitor.  
REG7 output. Bypass it to ground with a 2.2µF capacitor.  
General Purpose I/O #4. Configured as PWM LED driver output for up to 6mA current  
with programmable frequency and duty cycle. See the PWM LED Driver section for  
more information.  
39  
GPIO4  
40  
41  
42  
OUT6  
INL1  
REG6 output. Bypass it to ground with a 2.2µF capacitor.  
Power Input for REG5, REG6, REG7.  
OUT5  
REG5 output. Bypass it to ground with a 2.2µF capacitor.  
General Purpose I/O #3. Configured as PWM LED driver output for up to 6mA current  
with programmable frequency and duty cycle. See the PWM LED Drier section for  
more information.  
43  
44  
45  
GPIO3  
GPIO2  
GPIO1  
General Purpose I/O #2. Configured as PWM LED driver output for up to 6mA current  
with programmable frequency and duty cycle. See the PWM LED Drier section for  
more information.  
General Purpose I/O #1. Configured as PWM LED driver output for up to 6mA current  
with programmable frequency and duty cycle. See the PWM LED Drier section for  
more information.  
46  
47,48  
EP  
OUT3  
VP3  
EP  
Output Voltage Sense for REG3.  
Power input for REG3. Bypass to GP3 with a high quality ceramic capacitor placed as  
close to the IC as possible.  
Exposed Pad. Must be soldered to ground on PCB.  
Innovative PowerTM  
- 6 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
ABSOLUTE MAXIMUM RATINGSc  
PARAMETER  
VALUE  
UNIT  
INL1, INL2, INL3 to GA; VP1, SW1, OUT1 to GP14; VP2, SW2, OUT2 to GP2; VP3,  
SW3, OUT3 to GP3; VP4, SW4, OUT4 to GP14  
-0.3 to 6  
V
GP14, GP2, GP3 to GA  
-0.3 to + 0.3  
V
V
OUT5, OUT6, OUT7, OUT13 to GA  
-0.3 to INL1 + 0.3  
OUT8, OUT9, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, VSELR2, nPBIN,  
nRSTO, nIRQ, nPBSTAT, PWREN, PWRHLD, REFBP, SCL, SDA to GA  
-0.3 to INL2 + 0.3  
V
OUT10, OUT11, OUT12 to GA  
Junction to Ambient Thermal Resistance  
Operating Ambient Temperature Range  
Operating Junction Temperature  
Storage Temperature  
-0.3 to INL3 + 0.3  
21  
V
°C/W  
°C  
-40 to 85  
-40 to 125  
-55 to 150  
300  
°C  
°C  
Lead Temperature (Soldering, 10 sec)  
°C  
c: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may  
affect device reliability.  
Innovative PowerTM  
- 7 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
I2C INTERFACE ELECTRICAL CHARACTERISTICS  
(VINL2 = 3.6V, TA = 25°C, unless otherwise specified.)  
PARAMETER  
SCL, SDA Input Low  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VINL2 = 3.1V to 5.5V, TA = -40ºC to 85ºC  
0.35  
SCL, SDA Input High  
SDA Leakage Current  
SCL Leakage Current  
SDA Output Low  
V
INL2 = 3.1V to 5.5V, TA = -40ºC to 85ºC  
1.55  
V
1
1
µA  
µA  
V
I
OL = 5mA  
0.35  
SCL Clock Period, tSCL  
SDA Data Setup Time, tSU  
SDA Data Hold Time, tHD  
Start Setup Time, tST  
Stop Setup Time, tSP  
1.5  
100  
300  
100  
100  
µs  
ns  
ns  
ns  
ns  
For Start Condition  
For Stop Condition  
Figure 1:  
I2C Compatible Serial Bus Timing  
tSCL  
SCL  
SDA  
tST  
tHD  
tSU  
tSP  
Start  
condition  
Stop  
condition  
Innovative PowerTM  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
- 8 -  
www.active-semi.com  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
GLOBAL REGISTER MAP  
BITS  
BLOCK ADDRESS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
DEFAULTc  
NAME  
nBATLEVMSK nBATSTAT VBATDAT  
Reserved  
BATLEV[3] BATLEV[2] BATLEV[1]  
BATLEV[0]  
SYS  
0x00  
0x01  
0x10  
0x12  
0x20  
0x21  
0x22  
0x30  
0x31  
0x32  
0x40  
0x41  
0x42  
0x50  
0x51  
0x58  
0x59  
0x60  
0x61  
0
R
R
0
0
0
0
0
nTMSK  
TSTAT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SYS  
DEFAULTc  
0
R
0
0
0
0
0
0
NAME  
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
REG1  
REG1  
REG2  
REG2  
REG2  
REG3  
REG3  
REG3  
REG4  
REG4  
REG4  
REG5  
REG5  
REG6  
REG6  
REG7  
REG7  
DEFAULTc  
NAME  
DEFAULTc  
0
0
1
1
1
0
0
1
ON  
Reserved  
Reserved  
Reserved  
Reserved  
PHASE  
nFLTMSK  
OK  
1
1
0
0
0
0
0
R
NAME  
Reserved  
Reserved  
VSET0[5]  
VSET0[4]  
VSET0[3]  
VSET0[2]  
VSET0[1]  
VSET0[0]  
DEFAULTc  
NAME  
DEFAULTc  
0
0
0
1
1
0
0
1
Reserved  
Reserved  
VSET1[5]  
VSET1[4]  
VSET1[3]  
VSET1[2]  
VSET1[1]  
VSET1[0]  
0
0
0
0
1
1
1
0
NAME  
ON  
Reserved  
Reserved  
Reserved  
Reserved  
PHASE  
nFLTMSK  
OK  
DEFAULTc  
NAME  
DEFAULTc  
1
1
0
1
0
0
0
R
Reserved  
Reserved  
VSET0[5]  
VSET0[4]  
VSET0[3]  
VSET0[2]  
VSET0[1]  
VSET0[0]  
0
0
1
0
0
1
0
0
NAME  
Reserved  
Reserved  
VSET1[5]  
VSET1[4]  
VSET1[3]  
VSET1[2]  
VSET1[1]  
VSET1[0]  
DEFAULTc  
NAME  
DEFAULTc  
0
0
1
0
0
1
0
0
ON  
Reserved  
Reserved  
Reserved  
Reserved  
PHASE  
nFLTMSK  
OK  
1
1
0
0
0
1
0
R
NAME  
Reserved  
Reserved  
VSET0[5]  
VSET0[4]  
VSET0[3]  
VSET0[2]  
VSET0[1]  
VSET0[0]  
DEFAULTc  
NAME  
DEFAULTc  
0
0
0
1
0
1
0
0
Reserved  
Reserved  
VSET1[5]  
VSET1[4]  
VSET1[3]  
VSET1[2]  
VSET1[1]  
VSET1[0]  
0
0
0
1
0
0
0
0
NAME  
ON  
Reserved  
Reserved  
Reserved  
Reserved  
PHASE  
nFLTMSK  
OK  
DEFAULTc  
NAME  
DEFAULTc  
1
1
0
1
0
1
0
R
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
0
1
0
1
0
1
0
0
NAME  
ON  
Reserved  
Reserved  
Reserved  
Reserved  
DIS  
nFLTMSK  
OK  
DEFAULTc  
NAME  
DEFAULTc  
1
1
0
1
0
1
0
R
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
0
0
0
1
0
1
0
0
NAME  
ON  
Reserved  
Reserved  
Reserved  
Reserved  
DIS  
nFLTMSK  
OK  
DEFAULTc  
NAME  
DEFAULTc  
1
1
0
0
0
1
0
R
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
0
ON  
1
1
Reserved  
1
1
Reserved  
0
1
Reserved  
1
1
Reserved  
0
0
DIS  
1
0
nFLTMSK  
0
1
OK  
R
NAME  
DEFAULTc  
NAME  
DEFAULTc  
NAME  
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
REG8  
REG8  
0x68  
0x69  
0
ON  
1
1
Reserved  
1
0
Reserved  
0
1
Reserved  
1
0
Reserved  
0
1
DIS  
1
0
nFLTMSK  
0
0
OK  
R
DEFAULTc  
c: Default values of ACT8840QM188-T.  
Innovative PowerTM  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
- 9 -  
www.active-semi.com  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
GLOBAL REGISTER MAP CONT’D  
BITS  
BLOCK ADDRESS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
DEFAULTc  
NAME  
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
REG9  
REG9  
REG10  
REG10  
REG11  
REG11  
REG12  
REG12  
REG13  
PB  
0x70  
0x71  
0x80  
0x81  
0x90  
0x91  
0xA0  
0xA1  
0xB1  
0xC0  
0xC1  
0xC2  
0xC3  
0xC5  
0xE3  
0
1
1
1
0
1
0
0
ON  
Reserved  
Reserved  
Reserved  
Reserved  
DIS  
nFLTMSK  
OK  
DEFAULTc  
1
1
0
0
0
1
0
R
NAME  
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
DEFAULTc  
NAME  
DEFAULTc  
0
1
1
1
1
0
0
1
ON  
Reserved  
Reserved  
Reserved  
Reserved  
DIS  
nFLTMSK  
OK  
1
1
0
1
0
1
0
R
NAME  
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
DEFAULTc  
NAME  
DEFAULTc  
0
1
1
0
0
1
0
0
ON  
Reserved  
Reserved  
Reserved  
Reserved  
DIS  
nFLTMSK  
OK  
1
1
0
1
0
1
0
R
NAME  
Reserved  
Reserved  
VSET[5]  
VSET[4]  
VSET[3]  
VSET[2]  
VSET[1]  
VSET[0]  
DEFAULTc  
NAME  
DEFAULTc  
0
1
1
1
1
0
0
1
ON  
Reserved  
Reserved  
Reserved  
Reserved  
DIS  
nFLTMSK  
OK  
1
1
0
1
0
1
0
R
NAME  
ON  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DEFAULTc  
NAME  
DEFAULTc  
1
0
PBDMSK  
0
0
Reserved  
0
0
Reserved  
0
0
Reserved  
0
0
Reserved  
0
0
WDSREN  
0
0
PBAMSK  
WDPCEN  
0
0
NAME  
INTADR [7]  
INTADR [6] INTADR [5] INTADR [4] INTADR [3] INTADR [2] INTADR [1]  
INTADR [0]  
PB  
DEFAULTc  
NAME  
DEFAULTc  
R
R
R
R
R
R
R
R
PBASTAT  
PBDSTAT  
PBDAT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PB  
R
R
R
R
R
R
R
R
NAME  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SIPC  
PB  
DEFAULTc  
NAME  
DEFAULTc  
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PCSTAT  
SRSTAT  
PB  
0
0
0
0
0
0
R
R
NAME  
PWM6EN  
FRE6[2]  
FRE6[1]  
FRE6[0]  
DUTY6[3]  
DUTY6[2]  
DUTY6[1]  
DUTY6[0]  
GPIO6  
DEFAULTc  
NAME  
0
0
0
0
0
0
0
0
PWM5EN  
FRE5[2]  
FRE5[1]  
FRE5[0]  
DUTY5[3]  
DUTY5[2]  
DUTY5[1]  
DUTY5[0]  
GPIO5  
GPIO3  
GPIO4  
GPIO1  
GPIO2  
0xE4  
0xF4  
0xF5  
0xE5  
0xF3  
DEFAULTc  
0
0
FRE3[2]  
0
0
FRE3[1]  
0
0
FRE3[0]  
0
0
0
0
0
NAME  
PWM3EN  
DUTY3[3]  
DUTY3[2]  
DUTY3[1]  
DUTY3[0]  
DEFAULTc  
NAME  
DEFAULTc  
0
PWM4EN  
0
0
DUTY4[3]  
0
0
DUTY4[2]  
0
0
DUTY4[1]  
0
0
DUTY4[0]  
0
FRE4[2]  
0
FRE4[1]  
0
FRE4[0]  
0
NAME  
PWM1EN  
FRE1[2]  
FRE1[1]  
FRE1[0]  
DUTY1[3]  
DUTY1[2]  
DUTY1[1]  
DUTY1[0]  
DEFAULTc  
NAME  
DEFAULTc  
0
PWM2EN  
0
0
FRE2[2]  
0
0
FRE2[1]  
0
0
FRE2[0]  
0
0
DUTY2[3]  
0
0
DUTY2[2]  
0
0
DUTY2[1]  
0
0
DUTY2[0]  
0
c: Default values of ACT8840QM188-T.  
Innovative PowerTM  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
- 10 -  
www.active-semi.com  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
REGISTER AND BIT DESCRIPTIONS  
BLOCK ADDRESS BIT  
NAME  
ACCESS  
DESCRIPTION  
Battery Voltage Level Interrupt Mask. Set this bit to 1 to unmask  
the interrupt. See the Programmable Battery Voltage Monitor  
section for more information  
SYS  
SYS  
0x00  
0x00  
[7] nBATLEVMSK  
R/W  
Battery Voltage Status. Value is 1 when BATLEV interrupt is  
generated, value is 0 otherwise.  
[6]  
nBATSTAT  
R
Battery Voltage Monitor real time status. Value is 1 when VBAT  
< BATLEV, value is 0 otherwise.  
SYS  
SYS  
0x00  
0x00  
[5]  
[4]  
VBATDAT  
-
R
R/W  
Reserved.  
Battery Voltage Detect Threshold. Defines the BATLEV voltage  
threshold. See the Programmable Battary Voltage Monitor  
section for more information.  
SYS  
0x00  
[3:0]  
BATLEV  
R/W  
SYS  
SYS  
0x01  
0x01  
[7]  
[6]  
nTMSK  
TSTAT  
R/W  
R
Thermal Interrupt Mask. Set this bit to 1 to unmask the interrupt.  
Thermal Interrupt Status. Value is 1 when a thermal interrupt is  
generated, value is 0 otherwise.  
SYS  
0x01  
0x10  
[5:0]  
[7:6]  
-
R/W  
R
Reserved.  
Reserved.  
REG1  
-
Primary Output Voltage Selection. See the Output Voltage  
Programming section for more information  
REG1  
0x10  
[5:0]  
VSET0  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG1  
REG1  
0x12  
0x12  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Regulator Phase Control. Set bit to 1 for the regulator to operate  
180° out of phase with the oscillator, clear bit to 0 for the  
regulator to operate in phase with the oscillator.  
REG1  
REG1  
0x12  
0x12  
[2]  
[1]  
PHASE  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG1  
REG2  
0x12  
0x20  
[0]  
OK  
-
R
R
[7:6]  
Reserved.  
Primary Output Voltage Selection. Valid when VSEL is driven  
low. See the Output Voltage Programming section for more  
information  
REG2  
REG2  
REG2  
0x20  
0x21  
0x21  
[5:0]  
[7:6]  
[5:0]  
VSET0  
-
R/W  
R
Reserved.  
Secondary Output Voltage Selection. Valid when VSEL is driven  
high. See the Output Voltage Programming section for more  
information.  
VSET1  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG2  
REG2  
0x22  
0x22  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Regulator Phase Control. Set bit to 1 for the regulator to operate  
180° out of phase with the oscillator, clear bit to 0 for the  
regulator to operate in phase with the oscillator.  
REG2  
REG2  
0x22  
0x22  
[2]  
[1]  
PHASE  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG2  
REG3  
0x22  
0x30  
[0]  
OK  
-
R
R
[7:6]  
Reserved.  
Primary Output Voltage Selection. Valid when VSEL is driven  
low. See the Output Voltage Programming section for more  
information  
REG3  
0x30  
[5:0]  
VSET0  
R/W  
Innovative PowerTM  
- 11 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
REGISTER AND BIT DESCRIPTIONS CONT’D  
BLOCK ADDRESS BIT  
NAME  
ACCESS  
DESCRIPTION  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit  
to 0 to disable the regulator.  
REG3  
REG3  
0x32  
0x32  
[7]  
ON  
-
R/W  
[6:3]  
R
Reserved.  
Regulator Phase Control. Set bit to 1 for the regulator to operate  
180° out of phase with the oscillator, clear bit to 0 for the  
regulator to operate in phase with the oscillator.  
REG3  
REG3  
0x32  
0x32  
[2]  
[1]  
PHASE  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG3  
REG4  
0x32  
0x40  
[0]  
OK  
-
R
R
[7:6]  
Reserved.  
Primary Output Voltage Selection. Valid when VSEL is driven low.  
See the Output Voltage Programming section for more  
information  
REG4  
REG4  
REG4  
0x40  
0x41  
0x41  
[5:0]  
[7:6]  
[5:0]  
VSET0  
-
R/W  
R
Reserved.  
Secondary Output Voltage Selection. Valid when VSEL is driven  
high. See the Output Voltage Programming section for more  
information.  
VSET1  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit  
to 0 to disable the regulator.  
REG4  
REG4  
0x42  
0x42  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Regulator Phase Control. Set bit to 1 for the regulator to operate  
180° out of phase with the oscillator, clear bit to 0 for the  
regulator to operate in phase with the oscillator.  
REG4  
REG4  
0x42  
0x42  
[2]  
[1]  
PHASE  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG4  
REG5  
REG5  
0x42  
0x50  
0x50  
[0]  
OK  
-
R
R
[7:6]  
[5:0]  
Reserved.  
Output Voltage Selection. See the Output Voltage Programming  
section for more information.  
VSET  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit  
to 0 to disable the regulator.  
REG5  
REG5  
0x51  
0x51  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Output Discharge Control. When activated, LDO output is  
discharged to GA through 1.5kresistor when in shutdown. Set  
bit to 1 to enable output voltage discharge in shutdown, clear bit  
to 0 to disable this function.  
REG5  
REG5  
0x51  
0x51  
[2]  
[1]  
DIS  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG5  
REG6  
REG6  
0x51  
0x58  
0x58  
[0]  
OK  
-
R
R
[7:6]  
[5:0]  
Reserved.  
Output Voltage Selection. See the Output Voltage Programming  
section for more information.  
VSET  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit  
to 0 to disable the regulator.  
REG6  
REG6  
0x59  
0x59  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Output Discharge Control. When activated, LDO output is  
discharged to GA through 1.5kresistor when in shutdown. Set  
bit to 1 to enable output voltage discharge in shutdown, clear bit  
to 0 to disable this function.  
REG6  
0x59  
[2]  
DIS  
R/W  
Innovative PowerTM  
- 12 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
REGISTER AND BIT DESCRIPTIONS CONT’D  
BLOCK ADDRESS BIT  
NAME  
ACCESS  
DESCRIPTION  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
REG6  
0x59  
[1]  
nFLTMSK  
R/W  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG6  
REG7  
REG7  
0x59  
0x60  
0x60  
[0]  
OK  
-
R
R
[7:6]  
[5:0]  
Reserved.  
Output Voltage Selection. See the Output Voltage Programming  
section for more information.  
VSET  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG7  
REG7  
0x61  
0x61  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Output Discharge Control. When activated, LDO output is  
discharged to GA through 1.5kresistor when in shutdown. Set  
bit to 1 to enable output voltage discharge in shutdown, clear bit  
to 0 to disable this function.  
REG7  
REG7  
0x61  
0x61  
[2]  
[1]  
DIS  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG7  
REG8  
REG8  
0x61  
0x68  
0x68  
[0]  
OK  
-
R
R
[7:6]  
[5:0]  
Reserved.  
Output Voltage Selection. See the Output Voltage Programming  
section for more information.  
VSET  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG8  
REG8  
0x69  
0x69  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Output Discharge Control. When activated, LDO output is  
discharged to GA through 1.5kresistor when in shutdown. Set  
bit to 1 to enable output voltage discharge in shutdown, clear bit  
to 0 to disable this function.  
REG8  
REG8  
0x69  
0x69  
[2]  
[1]  
DIS  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG8  
REG9  
REG9  
0x69  
0x70  
0x70  
[0]  
OK  
-
R
R
[7:6]  
[5:0]  
Reserved.  
Output Voltage Selection. See the Output Voltage Programming  
section for more information.  
VSET  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG9  
REG9  
0x71  
0x71  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Output Discharge Control. When activated, LDO output is  
discharged to GA through 1.5kresistor when in shutdown. Set  
bit to 1 to enable output voltage discharge in shutdown, clear bit  
to 0 to disable this function.  
REG9  
REG9  
0x71  
0x71  
[2]  
[1]  
DIS  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG9  
REG10  
REG10  
0x71  
0x80  
0x80  
[0]  
OK  
-
R
R
[7:6]  
[5:0]  
Reserved.  
Output Voltage Selection. See the Output Voltage Programming  
section for more information.  
VSET  
R/W  
Innovative PowerTM  
- 13 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
REGISTER AND BIT DESCRIPTIONS CONT’D  
BLOCK ADDRESS BIT  
NAME  
ACCESS  
DESCRIPTION  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG10  
REG10  
0x81  
0x81  
[7]  
ON  
R/W  
[6:3]  
-
R
Reserved.  
Output Discharge Control. When activated, LDO output is  
discharged to GA through 1.5kresistor when in shutdown. Set  
bit to 1 to enable output voltage discharge in shutdown, clear bit  
to 0 to disable this function.  
REG10  
REG10  
0x81  
0x81  
[2]  
[1]  
DIS  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
R/W  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG10  
REG11  
REG11  
0x81  
0x90  
0x90  
[0]  
OK  
-
R
R
[7:6]  
[5:0]  
Reserved.  
Output Voltage Selection. See the Output Voltage Programming  
section for more information.  
VSET  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG11  
REG11  
0x91  
0x91  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Output Discharge Control. When activated, LDO output is  
discharged to GA through 1.5kresistor when in shutdown. Set  
bit to 1 to enable output voltage discharge in shutdown, clear bit  
to 0 to disable this function.  
REG11  
REG11  
0x91  
0x91  
[2]  
[1]  
DIS  
R/W  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
nFLTMSK  
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
REG11  
REG12  
REG12  
0x91  
0xA0  
0xA0  
[0]  
OK  
-
R
R
[7:6]  
[5:0]  
Reserved.  
Output Voltage Selection. See the Output Voltage Programming  
section for more information.  
VSET  
R/W  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG12  
REG12  
0xA1  
0xA1  
[7]  
ON  
-
R/W  
R
[6:3]  
Reserved.  
Output Discharge Control. When activated, LDO output is  
discharged to GA through 1.5kresistor when in shutdown. Set  
bit to 1 to enable output voltage discharge in shutdown, clear bit  
to 0 to disable this function.  
REG12  
0xA1  
[2]  
DIS  
R/W  
Regulator Fault Mask Control. Set bit to 1 enable fault-interrupts,  
clear bit to 0 to disable fault-interrupts.  
REG12  
REG12  
0xA1  
0xA1  
[1]  
[0]  
nFLTMSK  
OK  
R/W  
R
Regulator Power-OK Status. Value is 1 when output voltage  
exceeds the power-OK threshold, value is 0 otherwise.  
Regulator Enable Bit. Set bit to 1 to enable the regulator, clear  
bit to 0 to disable the regulator.  
REG13  
REG13  
PB  
0xB1  
0xB1  
0xC0  
[7]  
[6:0]  
7
ON  
R/W  
R
-
Reserved.  
nPBIN Assertion Interrupt Control. Set this bit to 1 to generate  
an interrupt when nPBIN is asserted.  
nPBAMSK  
R/W  
nPBIN De-assertion Interrupt Control. Set this bit to 1 to  
generate an interrupt when nPBIN is de-asserted.  
PB  
0xC0  
6
nPBDMSK  
R/W  
Innovative PowerTM  
- 14 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
REGISTER AND BIT DESCRIPTIONS CONT’D  
BLOCK ADDRESS BIT  
NAME  
ACCESS  
DESCRIPTION  
PB  
PB  
0xC0  
0xC0  
[5:2]  
1
-
R
Reserved.  
Watchdog Soft-Reset Enable. Set this bit to 1 to enable  
watchdog function. When the watchdog timer expires, the PMU  
commences a soft-reset routine. This bit is automatically reset to  
0 when entering sleep mode.  
WDSREN  
R/W  
Watchdog Power-Cycle Enable. Set this bit to 1 to enable  
watchdog function. When watchdog timer expires, the PMU  
commence a power cycle. This bit is automatically reset to 0  
when entering sleep mode.  
PB  
PB  
0xC0  
0xC1  
0
WDPCEN  
INTADR  
R/W  
R
Interrupt Address. It holds the address of the block that triggers  
the interrupt. This byte defaults to 0xFF and is automatically set  
to 0xFF after being read. Bit 7 is the MSB while Bit 0 is the LSB.  
[7:0]  
nPBIN Assertion Interrupt Status. The value of this bit is 1 if the  
nPBIN Assertion Interrupt is triggered.  
PB  
PB  
0xC2  
0xC2  
7
6
PBASTAT  
PBDSTAT  
R
R
nPBIN De-assertion Interrupt Status. The value of this bit is 1 if  
the nPBIN De-assertion Interrupt is triggered.  
nPBIN Status bit. This bit contains the real-time status of the  
nPBIN pin. The value of this bit is 1 if nPBIN is asserted, and is 0  
if nPBIN is de-asserted.  
PB  
0xC2  
5
PBASTAT  
R
PB  
PB  
0xC2  
0xC3  
[4:0]  
[7:1]  
-
-
R
R
Reserved.  
Reserved.  
Software Initiated Power Cycle. When this bit is set, the PMU  
commences a power cycle after 8ms delay.  
PB  
PB  
PB  
0xC3  
0xC5  
0xC5  
0
[7:2]  
1
SIPC  
-
R/W  
R
Reserved.  
Power-cycle Flag. The value of this bit is 1 after a power cycle.  
This bit is automatically cleared to 0 after read.  
PCSTAT  
R/W  
Soft-reset Flag. The value of this bit is 1 after a soft-reset. This  
bit is automatically cleared to 0 after read.  
PB  
0xC5  
0xE3  
0xE3  
0
SRSTAT  
PWM6EN  
FRE6  
R/W  
R/W  
R/W  
GPIO6  
GPIO6  
[7]  
PWM Function Enable. Set 1 to enable PWM function of GPIO6.  
PWM Frequency Selection Bits for GPIO6. See the Table 6 for  
code to frequency cross.  
[6:4]  
Duty Cycle Selection Bits for GPIO6. See the Table 7 for code to  
duty cross.  
GPIO6  
GPIO5  
GPIO5  
0xE3  
0xE4  
0xE4  
[3:0]  
[7]  
DUTY6  
PWM5EN  
FRE5  
R/W  
R/W  
R/W  
PWM Function Enable. Set 1 to enable PWM function of GPIO5.  
PWM Frequency Selection Bits for GPIO5. See the Table 6 for  
code to frequency cross.  
[6:4]  
Duty Cycle Selection Bits for GPIO5. See the Table 7 for code to  
duty cross.  
GPIO5  
GPIO3  
GPIO3  
0xE4  
0xF4  
0xF4  
[3:0]  
[7]  
DUTY5  
PWM3EN  
FRE3  
R/W  
R/W  
R/W  
PWM Function Enable. Set 1 to enable PWM function of GPIO3.  
PWM Frequency Selection Bits for GPIO3. See the Table 6 for  
code to frequency cross.  
[6:4]  
Duty Cycle Selection Bits for GPIO3. See the Table 7 for code to  
duty cross.  
GPIO3  
GPIO4  
GPIO4  
0xF4  
0xF5  
0xF5  
[3:0]  
[7]  
DUTY3  
PWM4EN  
FRE4  
R/W  
R/W  
R/W  
PWM Function Enable. Set 1 to enable PWM function of GPIO4.  
PWM Frequency Selection Bits for GPIO4. See the Table 6 for  
code to frequency cross.  
[6:4]  
Duty Cycle Selection Bits for GPIO4. See the Table 7 for code to  
duty cross.  
GPIO4  
0xF5  
[3:0]  
DUTY4  
R/W  
Innovative PowerTM  
- 15 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
REGISTER AND BIT DESCRIPTIONS CONT’D  
BLOCK ADDRESS BIT  
NAME  
ACCESS  
DESCRIPTION  
GPIO1  
GPIO1  
0xE5  
0xE5  
[7]  
PWM1EN  
R/W  
PWM Function Enable. Set 1 to enable PWM function of GPIO1.  
PWM Frequency Selection Bits for GPIO1. See the Table 6 for  
code to frequency cross.  
[6:4]  
FRE1  
R/W  
Duty Cycle Selection Bits for GPIO1. See the Table 7 for code to  
duty cross.  
GPIO1  
GPIO2  
GPIO2  
0xE5  
0xF3  
0xF3  
[3:0]  
[7]  
DUTY1  
PWM2EN  
FRE2  
R/W  
R/W  
R/W  
PWM Function Enable. Set 1 to enable PWM function of GPIO2.  
PWM Frequency Selection Bits for GPIO2. See the Table 6 for  
code to frequency cross.  
[6:4]  
Duty Cycle Selection Bits for GPIO2. See the Table 7 for code to  
duty cross.  
GPIO2  
0xF3  
[3:0]  
DUTY2  
R/W  
Innovative PowerTM  
- 16 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
SYSTEM CONTROL ELECTRICAL CHARACTERISTICS  
(VINL2 = 3.6V, TA = 25°C, unless otherwise specified.)  
PARAMETER  
Input Voltage Range  
TEST CONDITIONS  
MIN  
3.0  
TYP  
MAX  
5.5  
UNIT  
V
UVLO Threshold Voltage  
UVLO Hysteresis  
V
INL2 Rising  
INL2 Hysteresis  
2.6  
2.8  
200  
0.6  
3.0  
V
V
mV  
mA  
µA  
MHz  
V
Operating Supply Current  
Shutdown Supply Current  
Oscillator Frequency  
All Regulators Enabled but no load  
All Regulators Disabled except REG13  
1.2  
20  
10  
2.0  
1.4  
2.25  
2.5  
Logic High Input Voltage  
Logic Low Input Voltage  
Leakage Current  
0.4  
1
V
V[nIRQ] = V[nRSTO] = 4.2V  
nIRQ, nRSTO, ISINK = 5mA  
Temperature rising  
µA  
V
Low Level Output Voltage  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
0.3  
160  
20  
°C  
°C  
Innovative PowerTM  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
- 17 -  
www.active-semi.com  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
STEP-DOWN DC/DC ELECTRICAL CHARACTERISTICS  
(VVP1 = VVP2 = VVP3 = VVP4 = 3.6V, TA = 25°C, unless otherwise specified.)  
PARAMETER  
Operating Voltage Range  
UVLO Threshold  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNIT  
V
Input Voltage Rising  
Input Voltage Falling  
2.5  
2.6  
100  
72  
0
2.7  
V
UVLO Hysteresis  
mV  
µA  
Standby Supply Current  
Shutdown Current  
V
V
V
OUT = 103%, Regulator Enabled  
VP = 5.5V, Regulator Disabled  
OUT 1.0V, IOUT = 10mA  
100  
2
µA  
c
-1%  
-10  
VNOM  
1%  
10  
V
Output Voltage Accuracy  
VOUT < 1.0V, IOUT = 10mA  
VVP = Max (VNOM1 +1V, 3.2V) to 5.5V  
IOUT = 10mA to IMAX2  
mV  
%/V  
%/A  
%/A  
%VNOM  
%VNOM  
MHz  
kHz  
µs  
Line Regulation  
0.15  
1.70  
1.00  
93  
Load Regulation REG1/4  
Load Regulation REG2/3  
Power Good Threshold  
Power Good Hysteresis  
IOUT = 10mA to IMAX2  
V
OUT Rising  
VOUT Falling  
OUT 20% of VNOM  
2
V
2
2.25  
550  
400  
75  
2.5  
Switching Frequency  
VOUT = 0V  
Soft-Start Period  
Minimum On-Time  
REG1 AND REG4  
Maximum Output Current  
Current Limit  
ns  
1.3  
1.6  
A
A
2.1  
0.14  
0.08  
0
2.6  
2
PMOS On-Resistance  
NMOS On-Resistance  
SW Leakage Current  
Input Capacitor  
ISW = -100mA  
ISW = 100mA  
V
VP = 5.5V, VSW = 0 or 5.5V  
µA  
µF  
µF  
µH  
4.7  
33  
Output Capacitor  
Power Inductor  
1.0  
2.2  
3.3  
3.4  
2
REG2 AND REG3  
Maximum Output Current  
Current Limit  
1.8  
2.3  
A
A
2.8  
0.095  
0.08  
0
PMOS On-Resistance  
NMOS On-Resistance  
SW Leakage Current  
Input Capacitor  
I
SW = -100mA  
ISW = 100mA  
VP = 5.5V, VSW = 0 or 5.5V  
V
µA  
µF  
µF  
µH  
10  
Output Capacitor  
Power Inductor  
44  
0.5  
1
2.2  
c: VNOM refers to the nominal output voltage level for VOUT as defined by the Ordering Information section.  
2: IMAX Maximum Output Current.  
Innovative PowerTM  
- 18 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
LOW-NOISE LDO ELECTRICAL CHARACTERISTICS  
(VINL1 = VINL2 = 3.6V, COUT5 = COUT6 = COUT7 = COUT8 = COUT9 = 2.2µF, TA = 25°C, unless otherwise specified.)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.5  
-1  
TYP  
MAX  
5.5  
1
UNIT  
V
Operating Voltage Range  
c
VOUT 1.0V, IOUT = 10mA  
VNOM  
%
Output Voltage Accuracy  
V
OUT < 1.0V, IOUT = 10mA  
-10  
10  
mV  
Line Regulation  
Load Regulation  
V
INL = Max (VOUT + 0.5V, 3.6V) to 5.5V  
0.5  
0.1  
75  
65  
25  
0
mV  
V/A  
IOUT = 1mA to IMAX2  
f = 1kHz, IOUT = 20mA, VOUT = 1.2V  
f = 10kHz, IOUT = 20mA, VOUT = 1.2V  
Regulator Enabled  
Power Supply Rejection Ratio  
Supply Current per Output  
dB  
µA  
Regulator Disabled  
2
Soft-Start Period  
VOUT = 3.0V  
VOUT Rising  
VOUT Falling  
140  
92  
3.5  
µs  
%
%
Power Good Threshold  
Power Good Hysteresis  
I
OUT = 20mA, f = 10Hz to 100kHz, VOUT =  
Output Noise  
30  
µVRMS  
1.2V  
Discharge Resistance  
LDO Disabled, DIS[ ] = 1  
1.5  
kꢀ  
LDO rated at 150mA (REG5 & REG6)  
Dropout Voltagee  
Maximum Output Current  
Current Limitf  
IOUT = 80mA, VOUT > 3.1V  
140  
280  
280  
mV  
mA  
mA  
150  
180  
VOUT = 95% of regulation voltage  
Recommend Output Capacitor  
2.2  
µF  
LDO rated at 350mA (REG7, REG8 & REG9)  
Dropout Voltagee  
IOUT = 160mA, VOUT > 3.1V  
140  
mV  
mA  
mA  
µF  
Maximum Output Current  
Current Limitf  
350  
400  
VOUT = 95% of regulation voltage  
Recommend Output Capacitor  
2.2  
c: VNOM refers to the nominal output voltage level for VOUT as defined by the Ordering Information section.  
2: IMAX Maximum Output Current.  
3: Dropout Voltage is defined as the differential voltage between input and output when the output voltage drops 100mV below the  
regulation voltage (for 3.1V output voltage or higher).  
f: LDO current limit is defined as the output current at which the output voltage drops to 95% of the respective regulation voltage.  
Under heavy overload conditions the output current limit folds back by 50% (typ.).  
Innovative PowerTM  
- 19 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
LOW-INPUT VOLTAGE LDO ELECTRICAL CHARACTERISTICS  
(VINL3 = 3.6V, COUT10 = COUT11 = COUT12 = 2.2µF, TA = 25°C, unless otherwise specified.)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.7  
-1  
TYP  
MAX  
5.5  
1
UNIT  
V
Operating Voltage Range  
c
VOUT 1.0V, IOUT = 10mA  
OUT < 1.0V, IOUT = 10mA  
VINL = Max (VOUT + 0.5V, 3.6V) to 5.5V  
OUT = 1mA to IMAX2  
VNOM  
%
Output Voltage Accuracy  
V
-10  
10  
mV  
Line Regulation  
Load Regulation  
0.5  
0.1  
50  
40  
22  
0
mV  
V/A  
I
f = 1kHz, IOUT = 20mA, VOUT = 1.2V  
f = 10kHz, IOUT = 20mA, VOUT = 1.2V  
Regulator Enabled  
Power Supply Rejection Ratio  
Supply Current per Output  
dB  
µA  
Regulator Disabled  
2
Soft-Start Period  
VOUT = 3.0V  
VOUT Rising  
VOUT Falling  
100  
92  
3.5  
µs  
%
%
Power Good Threshold  
Power Good Hysteresis  
I
OUT = 20mA, f = 10Hz to 100kHz, VOUT =  
Output Noise  
30  
µVRMS  
1.2V  
Discharge Resistance  
LDO rated at 150mA (REG10)  
Dropout Voltagee  
LDO Disabled, DIS[ ] = 1  
1.5  
kꢀ  
IOUT = 80mA, VOUT > 3.1V  
100  
200  
200  
mV  
mA  
mA  
µF  
Maximum Output Current  
Current Limitf  
150  
180  
VOUT = 95% of regulation voltage  
Recommend Output Capacitor  
2.2  
LDO rated at 350mA (REG11 & REG12)  
Dropout Voltagee  
IOUT = 160mA, VOUT > 3.1V  
100  
mV  
mA  
mA  
µF  
Maximum Output Current  
Current Limitf  
350  
400  
VOUT = 95% of regulation voltage  
Recommend Output Capacitor  
2.2  
c: VNOM refers to the nominal output voltage level for VOUT as defined by the Ordering Information section.  
2: IMAX Maximum Output Current.  
3: Dropout Voltage is defined as the differential voltage between input and output when the output voltage drops 100mV below the  
regulation voltage (for 3.1V output voltage or higher).  
f: LDO current limit is defined as the output current at which the output voltage drops to 95% of the respective regulation voltage.  
Under heavy overload conditions the output current limit folds back by 50% (typ.).  
Innovative PowerTM  
- 20 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
LOW-POWER(ALWAYS-ON) LDO ELECTRICAL CHARACTERISTICS  
(VINL1 = 3.6V, COUT13 = 1µF, TA = 25°C, unless otherwise specified.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REG13  
Operating Voltage Range  
Output Voltage Accuracy  
Line Regulation  
2.5  
-3  
5.5  
3
V
c
VNOM  
13  
%
VINL1 = Max (VOUT + 0.2V, 2.5V) to 5.5V  
mV  
µA  
mA  
µF  
Supply Current from VINL1  
Maximum Output current  
Recommend Output Capacitor  
5
50  
0.47  
PWM LED DRIVER ELECTRICAL CHARACTERISTICS  
(VINL2 = 3.6V, TA = 25°C, unless otherwise specified.)  
PARAMETER  
Output Current  
TEST CONDITIONS  
100% Duty Cycle  
MIN  
TYP  
MAX  
16  
UNIT  
mA  
V
6
10  
Output Low Voltage  
Leakage Current  
Feed in with 6mA  
0.35  
1
Sinking from 5.5V source  
FRE[2:0] = 000  
µA  
Hz  
%
PWM Frequency  
0.25  
PWM Duty Adjustment  
DUTY[3:0] = 0000 to 1111  
6.25  
100  
c: VNOM refers to the nominal output voltage level for VOUT as defined by the Ordering Information section.  
Innovative PowerTM  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
- 21 -  
www.active-semi.com  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C, unless otherwise specified.)  
Frequency vs. Temperature  
VREF vs. Temperature  
2.360  
1.204  
2.340  
1.200  
2.320  
2.300  
1.196  
2.280  
2.260  
1.192  
2.240  
1.188  
1.184  
2.220  
2.200  
2.180  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
Temperature (°C)  
Startup of nPBIN, nRSTO, OUT6  
Startup of OUT6/2/4/8  
CH1  
CH1  
CH2  
CH3  
CH4  
CH2  
CH3  
CH1: VOUT6, 1V/div  
CH2: VOUT2, 1V/div  
CH3: VOUT4, 1V/div  
CH4: VOUT8, 1V/div  
TIME: 1ms/div  
CH1: VnPBIN, 2V/div  
CH2: VnRSTO, 2V/div  
CH3: VOUT6, 1V/div  
TIME: 20ms/div  
Startup of OUT8/1/3/9/10  
Startup of OUT8/5/7/11/12  
CH1  
CH2  
CH1  
CH2  
CH3  
CH3  
CH4  
CH4  
CH5  
CH5  
CH1: VOUT8, 1V/div  
CH2: VOUT5, 1V/div  
CH3: VOUT7, 2V/div  
CH4: VOUT11, 2V/div  
CH5: VOUT12, 2V/div  
TIME: 1ms/div  
CH1: VOUT8, 1V/div  
CH2: VOUT1, 2V/div  
CH3: VOUT3, 1V/div  
CH4: VOUT9, 2V/div  
CH5: VOUT10, 2V/div  
TIME: 1ms/div  
Innovative PowerTM  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
- 22 -  
www.active-semi.com  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
TYPICAL PERFORMANCE CHARACTERISTICS CONT’D  
(TA = 25°C, unless otherwise specified.)  
Sleep of PWREN, OUT1/3/9  
Sleep of PWREN, OUT2/4/6  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH4  
CH4  
CH1: VPWREN, 3V/div  
CH2: VOUT2, 1V/div  
CH3: VOUT4, 1V/div  
CH4: VOUT6, 1V/div  
TIME: 4ms/div  
CH1: VPWREN, 3V/div  
CH2: VOUT1, 2V/div  
CH3: VOUT3, 1V/div  
CH4: VOUT9, 2V/div  
TIME: 4ms/div  
Sleep of PWREN, OUT5/7/8  
Sleep of PWREN, OUT10/11/12  
CH1  
CH2  
CH1  
CH2  
CH3  
CH3  
CH4  
CH4  
CH1: VPWREN, 3V/div  
CH2: VOUT5, 1V/div  
CH3: VOUT7, 2V/div  
CH4: VOUT8, 10V/div  
TIME: 4ms/div  
CH1: VPWREN, 3V/div  
CH2: VOUT10, 2V/div  
CH3: VOUT11, 2V/div  
CH4: VOUT12, 3V/div  
TIME: 4ms/div  
Shutdown of PWRHLD, OUT1/3/5  
nPBIN and nPBSTAT  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH1: VPWRHLD, 2V/div  
CH2: VOUT1, 2V/div  
CH3: VOUT3, 2V/div  
CH4: VOUT5, 1V/div  
TIME: 1ms/div  
CH1: VnPBIN, 2V/div  
CH2: VnPBSTAT, 2V/div  
TIME: 10ms/div  
Innovative PowerTM  
- 23 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
TYPICAL PERFORMANCE CHARACTERISTICS CONT’D  
(TA = 25°C, unless otherwise specified.)  
Shutdown of PWRHLD, OUT2/4/8  
Shutdown of PWRHLD, OUT6/11/12  
CH1  
CH2  
CH1  
CH2  
CH3  
CH3  
CH4  
CH4  
CH1: VPWRHLD, 3V/div  
CH2: VOUT6, 1V/div  
CH3: VOUT11, 1V/div  
CH4: VOUT12, 3V/div  
TIME: 1ms/div  
CH1: VPWRHLD, 2V/div  
CH2: VOUT2, 500mV/div  
CH3: VOUT4, 1V/div  
CH4: VOUT8, 1V/div  
TIME: 1ms/div  
Shutdown of PWRHLD, OUT7/9/10  
REG1 Efficiency vs. Output Current  
100  
80  
60  
40  
20  
0
VOUT = 1.2V  
VIN = 3.6V  
CH1  
CH2  
VIN = 5.0V  
VIN = 4.0V  
CH3  
CH4  
0
1
10  
100  
1000  
10000  
CH1: VPWRHLD, 3V/div  
CH2: VOUT7, 3V/div  
CH3: VOUT9, 3V/div  
CH4: VOUT10, 3V/div  
TIME: 1ms/div  
Output Current (mA)  
Innovative PowerTM  
- 24 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
TYPICAL PERFORMANCE CHARACTERISTICS CONT’D  
(TA = 25°C, unless otherwise specified.)  
REG2 Efficiency vs. Output Current  
REG3 Efficiency vs. Output Current  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VOUT = 1.1V  
VIN = 3.6V  
VOUT = 1.2V  
VIN = 3.6V  
VIN = 5.0V  
VIN = 5.0V  
VIN = 4.0V  
VIN = 4.0V  
0
1
10  
100  
1000  
10000  
0
1
10  
100  
1000  
10000  
Output Current (mA)  
Output Current (mA)  
REG4 Efficiency vs. Output Current  
REG10 @ 10mA vs. Temperature  
100  
80  
60  
40  
20  
0
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
VOUT = 1.1V  
VIN = 3.6V  
VIN = 5.0V  
VIN = 4.0V  
0
1
10  
100  
1000  
10000  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Output Current (mA)  
Temperature (°C)  
VOUT10 @ 150mA vs. Temperature  
REG5/6 Dropout Voltage vs. IOUT  
400  
350  
300  
250  
200  
150  
100  
50  
1.186  
1.182  
1.178  
1.174  
1.170  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
0
50  
100  
150  
200  
250  
Temperature (°C)  
Output Current (mA)  
Innovative PowerTM  
- 25 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
TYPICAL PERFORMANCE CHARACTERISTICS CONT’D  
(TA = 25°C, unless otherwise specified.)  
REG5 VOUT vs. IOUT  
REG6 VOUT vs. IOUT  
1.200  
1.160  
1.120  
1.080  
1.040  
1.000  
1.200  
1.160  
1.120  
1.080  
1.040  
1.000  
0
40  
80  
120  
160  
200  
0
40  
80  
120  
160  
200  
Output Current (mA)  
Output Current (mA)  
REG7/8/9 Dropout Voltage vs. IOUT  
REG7 VOUT vs. IOUT  
3.400  
3.360  
3.320  
3.280  
3.240  
3.200  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200 250 300 350 400  
Output Current (mA)  
Output Current (mA)  
REG8 VOUT vs. IOUT  
REG9 VOUT vs. IOUT  
1.900  
1.860  
1.820  
1.780  
1.740  
1.700  
3.310  
3.300  
3.290  
3.280  
3.270  
3.260  
3.250  
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200 250 300 350 400  
Output Current (mA)  
Output Current (mA)  
Innovative PowerTM  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
- 26 -  
www.active-semi.com  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
TYPICAL PERFORMANCE CHARACTERISTICS CONT’D  
(TA = 25°C, unless otherwise specified.)  
REG10 Dropout Voltage vs. IOUT  
REG10 VOUT vs. IOUT  
250  
200  
150  
100  
50  
1.300  
1.260  
1.220  
1.180  
1.140  
1.000  
0
0
50  
100  
150  
200  
0
40  
80  
120  
160  
200  
Output Current (mA)  
Output Current (mA)  
REG11 Dropout Voltage vs. IOUT  
REG11 VOUT vs. IOUT  
250  
200  
150  
100  
50  
1.200  
1.160  
1.120  
1.080  
1.040  
1.000  
0
0
50  
100  
150  
200  
250  
300  
350  
0
100  
200  
300  
400  
Output Current (mA)  
Output Current (mA)  
REG12 Dropout Voltage vs. IOUT  
REG12 VOUT vs. IOUT  
250  
200  
150  
100  
50  
1.900  
1.860  
1.820  
1.780  
1.740  
1.700  
0
0
100  
200  
300  
400  
0
50  
100  
150  
200  
250  
300  
350  
Output Current (mA)  
Output Current (mA)  
Innovative PowerTM  
- 27 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
SYSTEM CONTROL INFORMATION  
Interfacing with the Telechips TCC88xx Processors  
The ACT8840 is optimized for the general Single-  
core processors, supporting both the power  
domains as well as the signal interface. The  
following paragraphs describe how to design  
ACT8840 with the general Single-core processors.  
configurations for powering these processors, one  
of the most common configurations is detailed in  
this datasheet.  
While the ACT8840 supports many possible  
Table 1:  
ACT8840 Power Domains  
ACT8840  
REGULATOR  
DEFAULT  
VOLTAGE CURRENT ORDER  
MAX  
POWER UP  
POWER OFF  
ORDER  
POWER DOMAIN  
ON/OFF @ SLEEP  
TYPE  
VDD_M0  
PVDD_MEM  
VDD_EXT0~2  
VDD_LCD  
VDD_AUD  
REG1  
3.3V  
1.3A  
3
ON  
1
DC/DC Step Down  
VDD_SYS0~1  
VDD_CKO  
VDD_KEY  
VDD_MODEM  
VDD_IO  
REG2  
REG3  
REG4  
VDD_ARM  
1.25V  
1.8V  
1.1V  
1.8A  
1.8A  
1.3A  
2
3
2
OFF  
ON  
2
1
2
DC/DC Step Down  
DC/DC Step Down  
DC/DC Step Down  
VDD_M1~2  
VDD_MEM1~2  
VDD_INT  
OFF  
VDD_UOTG_D  
VDD_UHOST_D  
REG5  
REG6  
REG7  
1.1V  
1.1V  
3.3V  
150mA  
150mA  
350mA  
3
1
3
OFF  
ON  
1
3
1
Low-Noise LDO  
Low-Noise LDO  
Low-Noise LDO  
VDD_ALIVE  
VDD_UOTG_A  
VDD_UHOST_A  
OFF  
VDD_APLL  
VDD_MPLL  
VDD_VPLL  
VDD_EPLL  
VDD_HDMI  
REG8  
1.1V  
350mA  
2
OFF  
2
Low-Noise LDO  
VDD_HDMI_PLL  
VDD_MIPI_D  
VDD_MIPI_PLL  
REG9  
REG10  
REG11  
VDD_CAM  
VDD_ADC  
2.8V  
3.3V  
1.8V  
350mA  
150mA  
350mA  
3
3
3
ON  
OFF  
OFF  
1
1
1
Low-Noise LDO  
Low Input-Voltage LDO  
Low Input-Voltage LDO  
VDD_MIPI_A  
VDD_DAC  
VDD_DAC_A  
VDD_HDMI_OSC  
REG12  
REG13  
3.3V  
3.0V  
350mA  
50mA  
3
0
OFF  
ON  
1
0
Low Input-Voltage LDO  
Always-ON LDO  
VDD_RTC  
Innovative PowerTM  
- 28 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
Figure 2:  
Control Signals  
nPBIN Input  
Enable Inputs  
The ACT8840 features a variety of control inputs,  
which are used to enable and disable outputs  
depending upon the desired mode of operation.  
PWREN, PWRHLD are logic inputs, while nPBIN is  
a unique, multi-function input.  
nPBIN Multi-Function Input  
The ACT8840 features the nPBIN multi-function  
pin, which combines system enable/disable control  
with a hardware reset function. Select either of the  
two pin functions by asserting this pin, either  
through a direct connection to GA, or through a  
50kresistor to GA, as shown in Figure 2.  
nRSTO Output  
Manual Reset Function  
nRSTO is an open-drain output which asserts low  
upon startup or when manual reset is asserted via  
the nPBIN input. When asserted on startup, nRSTO  
remains low until reset time-out period expires.  
When asserted due to manual-reset, nRSTO  
immediately asserts low, then remains asserted low  
until the nPBIN input is de-asserted and the reset  
time-out period expires.  
The second major function of the nPBIN input is to  
provide a manual-reset input for the processor. To  
manually-reset the processor, drive nPBIN directly  
to GA through a low impedance (less than 2.5k).  
An internal timer detects the duration of the MR  
event:  
Short Press / Soft-Reset:  
Connect a 10kor greater pull-up resistor from  
nRSTO to an appropriate voltage supply.  
If the MR is asserted for less than 4s, ACT8840  
commences a soft-reset operation where nRSTO  
immediately asserts low, then remains asserted low  
until the nPBIN input is de-asserted and the reset  
time-out period expires. A status bit, SRSTAT[ ] , is  
set after a soft-reset event. The SRSTAT[ ] bit is  
automatically cleared to 0 after read. After Short  
Press, set WDSREN[ ] to 1 about 1s after nRSTO  
de-assert then clear WDSREN[ ] for properly  
shutdown sequence.  
nIRQ Output  
nIRQ is an open-drain output that asserts low any  
time an interrupt is generated. Connect a 10kor  
greater pull-up resistor from nIRQ to an appropriate  
voltage supply. nIRQ is typically used to drive the  
interrupt input of the system processor.  
Many of the ACT8840's functions support interrupt-  
generation as a result of various conditions. These  
are typically masked by default, but may be  
unmasked via the I2C interface. For more  
information about the available fault conditions,  
refer to the appropriate sections of this datasheet.  
Long Press / Power-cycle:  
If the MR is asserted for more than 4s, ACT8840  
commences a power cycle routine in which case all  
regulators are turned off and then turned back on. A  
status bit, PCSTAT[ ], is set after the power cycle.  
The PCSTAT[ ] bit is automatically cleared to 0 after  
read.  
nPBSTAT Output  
nPBSTAT is an open-drain output that reflects the  
state of the nPBIN input; nPBSTAT is asserted low  
whenever nPBIN is asserted, and is high-Z  
otherwise. This output is typically used as an  
interrupt signal to the processor, to initiate a  
software-programmable routine such as operating  
mode selection or to open a menu. Connect  
nPBSTAT to an appropriate supply voltage through  
a 10kor greater resistor.  
Innovative PowerTM  
- 29 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
activity for the PMU. In the case where the system  
software stops responding and that there is no I2C  
transactions for 4s, the watchdog timer expires. As  
a result, the PMU either perform a soft-reset or  
power cycle, depending on whether WDSREN [ ] or  
WDPCEN [ ] is set.  
Push-Button Control  
The ACT8840 is designed to initiate a system  
enable sequence when the nPBIN multi-function  
input is asserted. Once this occurs, a power-on  
sequence commences, as described below. The  
power-on sequence must complete and the  
microprocessor must take control (by asserting  
PWRHLD) before nPBIN is de-asserted. If the  
microprocessor is unable to complete its power-up  
routine successfully before the user releases the  
push-button, the ACT8840 automatically shuts the  
system down. This provides protection against  
accidental or momentary assertions of the push-  
button. If desired, longer “push-and-hold” times can  
be implemented by simply adding an additional time  
delay before asserting PWREN or PWRHLD.  
Software-Initiated Power Cycle  
ACT8840 supports software-initiated power cycle.  
Once the SIPC[ ] bit is set, the PMU waits for 8ms  
and then initiate a power cycle to restart the entire  
system.  
Control Sequences  
The ACT8840 features  
a
variety of control  
sequences that are optimized for supporting system  
enable and disable.  
Enabling/Disabling Sequence  
A typical enable sequence is initiated whenever the  
nPBIN is asserted low via 50Kresistance. The  
power control diagram is shown in Figure 3. During  
the boot sequence, the microprocessor must assert  
PWRHLD, and PWREN, to ensure that the system  
remains powered after nPBIN is released. Once the  
power-up routine is completed, the system remains  
enabled after the push-button is released as long as  
either PWRHLD is asserted high. If the processor  
does not assert PWRHLD before the user releases  
the push-button, the boot-up sequence is  
terminated and all regulators are disabled. This  
provides protection against "false-enable", when the  
push-button is accidentally depressed, and also  
ensures that the system remains enabled only if the  
processor successfully completes the boot-up  
sequence.  
As with the enable sequence, a typical disable  
sequence is initiated when the user presses the  
push-button, which interrupts the processor via the  
nPBSTAT output. The actual disable sequence is  
completely software-controlled, but typically  
involved initiating various “clean-up” processes  
before the processor finally de-asserts PWRHLD.  
Watch-Dog Supervision  
The ACT8840 features a watchdog supervisory  
function. An internal watchdog timer of 4s is  
unmasked by setting either WDSREN[  
]
or  
WDPCEN [ ] bit to one. Once enabled, the  
watchdog timer is reset whenever there is I2C  
Innovative PowerTM  
- 30 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
Figure 3:  
Power Control Sequence  
Innovative PowerTM  
- 31 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
FUNCTIONAL DESCRIPTION  
I2C Interface  
Table 2:  
BATLEV Falling Threshold  
The ACT8840 features an I2C interface that allows  
advanced programming capability to enhance overall  
system performance. To ensure compatibility with a  
wide range of system processors, the I2C interface  
supports clock speeds of up to 400kHz (“Fast-Mode”  
operation) and uses standard I2C commands. I2C  
write-byte commands are used to program the  
ACT8840, and I2C read-byte commands are used to  
read the ACT8840’s internal registers. The ACT8840  
always operates as a slave device, and is addressed  
using a 7-bit slave address followed by an eighth bit,  
which indicates whether the transaction is a read-  
operation or a write-operation, [1011010x].  
BATLEV[3:0]  
BATLEV Falling  
Threshold  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
SDA is a bi-directional data line and SCL is a clock  
input. The master device initiates a transaction by  
issuing a START condition, defined by SDA  
transitioning from high to low while SCL is high. Data  
is transferred in 8-bit packets, beginning with the  
MSB, and is clocked-in on the rising edge of SCL.  
Each packet of data is followed by an “Acknowledge”  
(ACK) bit, used to confirm that the data was  
transmitted successfully.  
For more information regarding the I2C 2-wire serial  
interface, go to the NXP website: http://www.nxp.com.  
Housekeeping Functions  
Programmable battery Voltage Monitor  
The ACT8840 features a programmable battery-  
voltage monitor, which monitors the voltage at INL2  
(which should be connected directly to the battery)  
and compares it to a programmable threshold  
voltage. The VBATMON comparator is designed to  
be immune to noise resulting from switching, load  
transients, etc. The BATMON comparator is disable  
by default; to enable it, set the BATLEV[3:0] register  
to one of the value in Table 2. Note that there is a  
200mV hysteresis between the rising and falling  
threshold for the comparator. The VBATDAT [-] bit  
reflects the output of the BATMON comparator. The  
value of VBATDAT[ ] is 1 when VINL2 < BATLEV;  
value is 0 otherwise.  
Thermal Protection  
The ACT8840 integrates thermal shutdown  
protection circuitry to prevent damage resulting  
from excessive thermal stress, as may be  
encountered under fault conditions.  
Thermal Interrupt  
If the thermal interrupt is unmasked (by setting  
nTMSK[ ] to 1), ACT8840 can generate an interrupt  
when the die temperature reaches 120°C (typ.).  
Thermal Protection  
The VBATMON comparator can generate an  
interrupt when VINL2 is lower than BATLEV[ ] voltage.  
The interrupt is masked by default by can be  
unmasked by setting VBATMSK[ ] = 1.  
If the ACT8840 die temperature exceeds 160°C, the  
thermal protection circuitry disables all regulators  
and prevents the regulators from being enabled until  
the IC temperature drops by 20°C (typ.).  
Innovative PowerTM  
- 32 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
STEP-DOWN DC/DC REGULATORS  
Input Capacitor Selection  
General Description  
The input capacitor reduces peak currents and noise  
induced upon the voltage source. A 10μF ceramic  
capacitor is recommended for each regulator in most  
applications.  
REG1, REG2, REG3, and REG4 are fixed-frequency,  
current-mode, synchronous PWM step-down  
converters that achieves peak efficiencies of up to  
97%. These regulators operate with a fixed frequency  
of 2.25MHz, minimizing noise in sensitive  
applications and allowing the use of small external  
components. Additionally, REG1, REG2, REG3, and  
REG4 are available with a variety of standard and  
custom output voltages, and may be software-  
controlled via the I2C interface for systems that  
require advanced power management functions.  
Output Capacitor Selection  
REG1, REG2, REG3, and REG4 were designed to  
take advantage of the benefits of ceramic capacitors,  
namely small size and very-low ESR. REG1, REG2,  
REG3 and REG4 are designed to operate with 33uF  
or 44uF output capacitor over most of their output  
voltage ranges, although more capacitance may be  
desired depending on the duty cycle and load step  
requirements.  
100% Duty Cycle Operation  
REG1, REG2, REG3, and REG4 are capable of  
operating at up to 100% duty cycle. During 100%  
duty cycle operation, the high-side power MOSFETs  
Two of the most common dielectrics are Y5V and  
X5R. Whereas Y5V dielectrics are inexpensive and  
can provide high capacitance in small packages, their  
capacitance varies greatly over their voltage and  
temperature ranges and are not recommended for  
DC/DC applications. X5R and X7R dielectrics are  
more suitable for output capacitor applications, as  
their characteristics are more stable over their  
operating ranges, and are highly recommended.  
are held on continuously, providing  
a
direct  
connection from the input to the output (through the  
inductor), ensuring the lowest possible dropout  
voltage in battery powered applications.  
Operating Mode  
By default, REG1, REG2, REG3, and REG4 operate  
in fixed-frequency PWM mode at medium to heavy  
loads, then transition to a proprietary power-saving  
mode at light loads in order to save power.  
Inductor Selection  
REG1, REG2, REG3, and REG4 utilize current-mode  
control and a proprietary internal compensation  
scheme to simultaneously simplify external  
component selection and optimize transient  
performance over their full operating range. These  
devices were optimized for operation with 2.2μH or  
1μH inductors. Choose an inductor with a low DC-  
resistance, and avoid inductor saturation by choosing  
inductors with DC ratings that exceed the maximum  
output current by at least 30%.  
Synchronous Rectification  
REG1, REG2, REG3, and REG4 each feature  
integrated synchronous rectifiers, maximizing  
efficiency and minimizing the total solution size and  
cost by eliminating the need for external rectifiers.  
Soft-Start  
REG1, REG2, REG3, and REG4 include internal 400  
us soft-start ramps which limit the rate of change of  
the output voltage, minimizing input inrush current  
and ensuring that the output powers up in a  
monotonic manner that is independent of loading on  
the outputs. This circuitry is effective any time the  
regulator is enabled, as well as after responding to a  
short-circuit or other fault condition.  
Configuration Options  
Output Voltage Programming  
By default, each regulator powers up and regulates to  
its default output voltage. For REG2, REG3 and  
REG4, the output voltage is selectable by setting  
corresponding VSEL pin that when VSEL is low,  
output voltage is programmed by VSET0[-] bits, and  
when VSEL is high, output voltage is programmed by  
VSET1[-] bits. Also, once the system is enabled,  
each regulator's output voltage may be independently  
programmed to a different value. Program the output  
voltages via the I2C serial interface by writing to the  
regulator's VSET0[-] register if VSEL is low or  
VSET1[-] register if VSEL is high as shown in Table  
3.  
Compensation  
REG1, REG2, REG3, and REG4 utilize current-mode  
control and a proprietary internal compensation  
scheme to simultaneously simplify external  
component selection and optimize transient  
performance over their full operating range. No  
compensation design is required; simply follow a few  
simple guide lines described below when choosing  
external components.  
Innovative PowerTM  
- 33 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
gradients in the ground plane, both of which can  
result in instability or regulation errors.  
Enable / Disable Control  
During normal operation, each buck may be enabled  
or disabled via the I2C interface by writing to that  
regulator's ON[ ] bit.  
Step-down DC/DCs exhibit discontinuous input  
current, so the input capacitors should be placed as  
close as possible to the IC, and avoiding the use of  
via if possible. The inductor, input filter capacitor, and  
output filter capacitor should be connected as close  
together as possible, with short, direct, and wide  
traces. The ground nodes for each regulator's power  
loop should be connected at a single point in a star-  
ground configuration, and this point should be  
connected to the backside ground plane with multiple  
via. The output node for each regulator should be  
connected to its corresponding OUTx pin through the  
shortest possible route, while keeping sufficient  
distance from switching nodes to prevent noise  
injection. Finally, the exposed pad should be directly  
connected to the backside ground plane using  
multiple via to achieve low electrical and thermal  
resistance.  
OK[ ] and Output Fault Interrupt  
Each DC/DC features a power-OK status bit that can  
be read by the system microprocessor via the I2C  
interface. If an output voltage is lower than the power-  
OK threshold, typically 7% below the programmed  
regulation voltage, that regulator's OK[ ] bit will be 0.  
If a DC/DC's nFLTMSK[-] bit is set to 1, the ACT8840  
will interrupt the processor if that DC/DC's output  
voltage falls below the power-OK threshold. In this  
case, nIRQ will assert low and remain asserted until  
either the regulator is turned off or back in regulation,  
and the OK[ ] bit has been read via I2C.  
PCB Layout Considerations  
High switching frequencies and large peak currents  
make PC board layout an important part of step-down  
DC/DC converter design. A good design minimizes  
excessive EMI on the feedback paths and voltage  
Table 3:  
REGx/VSET[ ] Output Voltage Setting  
REGx/VSET[5:3]  
REGx/VSET[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
0.600  
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.250  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.100  
2.150  
2.200  
2.250  
2.300  
2.350  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
3.600  
3.700  
3.800  
3.900  
Innovative PowerTM  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
- 34 -  
www.active-semi.com  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
LOW-NOISE, LOW-DROPOUT LINEAR REGULATORS  
General Description  
Output Discharge  
Each of the LDOs features an optional output  
discharge function, which discharges the output to  
ground through a 1.5kresistance when the LDO is  
disabled. This feature may be enabled or disabled  
by setting DIS[-]; set DIS[-] to 1 to enable this  
function, clear DIS[-] to 0 to disable it.  
ACT8840 features eight low-noise, low-dropout  
linear regulators (LDOs) that supply up to 350mA.  
Three of these LDOs (REG10, REG11, and  
REG12) supports extended input voltage range  
down to 1.7V. Each LDO has been optimized to  
achieve low noise and high-PSRR.  
OK[ ] and Output Fault Interrupt  
Output Current Limit  
Each LDO features a power-OK status bit that can  
be read by the system microprocessor via the  
interface. If an output voltage is lower than the  
power-OK threshold, typically 11% below the  
programmed regulation voltage, the value of that  
regulator's OK[-] bit will be 0.  
Each LDO contains current-limit circuitry featuring a  
current-limit fold-back function. During normal and  
moderate overload conditions, the regulators can  
support more than their rated output currents.  
During extreme overload conditions, however, the  
current limit is reduced by approximately 30%,  
reducing power dissipation within the IC.  
If a LDO's nFLTMSK[-] bit is set to 1, the ACT8840  
will interrupt the processor if that LDO's output  
voltage falls below the power-OK threshold. In this  
case, nIRQ will assert low and remain asserted until  
either the regulator is turned off or back in  
regulation, and the OK[-] bit has been read via I2C.  
Compensation  
The LDOs are internally compensated and require  
very little design effort, simply select input and  
output capacitors according to the guidelines below.  
Input Capacitor Selection  
PCB Layout Considerations  
Each LDO requires a small ceramic input capacitor  
to supply current to support fast transients at the  
input of the LDO. Bypassing each INL pin to GA  
with 1μF. High quality ceramic capacitors such as  
X7R and X5R dielectric types are strongly  
recommended.  
The ACT8840’s LDOs provide good DC, AC, and  
noise performance over a wide range of operating  
conditions, and are relatively insensitive to layout  
considerations. When designing a PCB, however,  
careful layout is necessary to prevent other circuitry  
from degrading LDO performance.  
A good design places input and output capacitors  
as close to the LDO inputs and output as possible,  
and utilizes a star-ground configuration for all  
regulators to prevent noise-coupling through  
ground. Output traces should be routed to avoid  
close proximity to noisy nodes, particularly the SW  
nodes of the DC/DCs.  
Output Capacitor Selection  
Each LDO requires a small 2.2μF ceramic output  
capacitor for stability . For best performance, each  
output capacitor should be connected directly  
between the output and GA pins, as close to the  
output as possible, and with a short, direct  
connection. High quality ceramic capacitors such as  
X7R and X5R dielectric types are strongly  
recommended.  
REFBP is a noise-filtered reference, and internally  
has a direct connection to the linear regulator  
controller. Any noise injected onto REFBP will  
directly affect the outputs of the linear regulators,  
and therefore special care should be taken to  
ensure that no noise is injected to the outputs via  
REFBP. As with the LDO output capacitors, the  
REFBP bypass capacitor should be placed as close  
to the IC as possible, with short, direct connections  
to the star-ground. Avoid the use of via whenever  
possible. Noisy nodes, such as from the DC/DCs,  
should be routed as far away from REFBP as  
possible.  
Configuration Options  
Output Voltage Programming  
By default, each LDO powers up and regulates to  
its default output voltage. Once the system is  
enabled, each output voltage may be independently  
programmed to a different value by writing to the  
regulator's VSET[-] register via the I2C serial  
interface as shown in Table 3.  
Enable / Disable Control  
During normal operation, each LDO may be  
enabled or disabled via the I2C interface by writing  
to that LDO's ON[ ] bit.  
Innovative PowerTM  
- 35 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
ALWAYS-ON LDO (REG13)  
General Description  
REG13 is an always-on, low-dropout linear  
regulator (LDO) that is optimized for RTC and  
backup-battery applications. REG13 features low-  
quiescent supply current, current-limit protection,  
and reverse-current protection, and is ideally suited  
for always-on power supply applications, such as  
for a real-time clock, or as a backup-battery or  
super-cap charger.  
Reverse-Current Protection  
REG13 features internal circuitry that limits the  
reverse supply current to less than 1µA when the  
input voltage falls below the output voltage, as can  
be encountered in backup-battery charging  
applications. REG13's internal circuitry monitors the  
input and the output, and disconnects internal  
circuitry and parasitic diodes when the input voltage  
falls below the output voltage, greatly minimizing  
backup battery discharge.  
Typical Application  
Voltage Regulators  
REG13 is ideally suited for always-on voltage-  
regulation applications, such as for real-time clock  
and memory keep-alive applications. This regulator  
requires only a small ceramic capacitor with a  
minimum capacitance of 0.47μF for stability. For  
best performance, the output capacitor should be  
connected directly between the output and GA, with  
a short and direct connection.  
Figure 4:  
Typical Application of RTC LDO  
Backup Battery Charging  
REG13 features a constant current-limit, which  
protects the IC under output short-circuit conditions  
as well as provides a constant charge current, when  
operating as a backup battery charger.  
Innovative PowerTM  
- 36 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
PWM LED DRIVERS  
Table 5:  
GPIOx/DUTY[ ] PWM Frequency Setting  
The GPIO1, the GPIO2, the GPIO3, the GPIO4, the  
GPIO5, and the GPIO6 are configured as PWM  
LED drivers, which could support up to 6mA current  
with programmable frequency and duty cycle. Set  
PWMxEN[ ] bit to “1” to enable PWM function of  
GPIOx.  
GPIOx/DUTY[3:0]  
0000  
PWM Duty Cycle [%]  
6.25  
12.5  
18.75  
25  
0001  
PWM Frequence Selection  
0010  
Each LED driver may be independently  
programmed to a different frequency by writing to  
the GPIO’s FRE[2:0] register via the I2C serial  
interface as shown in Table 4.  
0011  
0100  
31.25  
37.5  
43.75  
50  
0101  
Table 4:  
0110  
GPIOx/FRE[ ] PWM Frequency Setting  
0111  
GPIOx/FRE[2:0]  
PWM Frequency [Hz]  
1000  
56.25  
62.5  
68.75  
75  
000  
001  
010  
011  
100  
101  
0.25  
0.5  
1
1001  
1010  
1011  
2
1100  
81.25  
87.5  
93.75  
100  
128  
256  
1101  
1110  
1111  
PWM Duty Cycle Selection  
Each LED driver may be independently  
programmed to a different duty cycle by writing to  
the GPIO’s DUTY[3:0] register via the I2C serial  
interface as shown in Table 5.  
Innovative PowerTM  
- 37 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  
ACT8840  
Rev 1, 07-Feb-14  
TQFN66-48 PACKAGE OUTLINE AND DIMENSIONS  
DIMENSION IN  
MILLIMETERS  
DIMENSION IN  
INCHES  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
A1  
A2  
b
0.700  
0.800  
0.032  
0.036  
0.200 REF  
0.008 REF  
0.000  
0.150  
0.000  
0.006  
0.050  
0.250  
0.002  
0.010  
D
6.00  
6.00  
0.24  
0.24  
E
D2  
E2  
e
4.15  
4.15  
4.40  
4.40  
0.166  
0.166  
0.176  
0.176  
0.400 BSC  
0.300 0.500  
0.300  
0.016 BSC  
0.012 0.020  
0.012  
L
R
Active-Semi, Inc. reserves the right to modify the circuitry or specifications without notice. Users should evaluate each  
product to make sure that it is suitable for their applications. Active-Semi products are not intended or authorized for use  
as critical components in life-support devices or systems. Active-Semi, Inc. does not assume any liability arising out of  
the use of any product or circuit described in this datasheet, nor does it convey any patent license.  
Active-Semi and its logo are trademarks of Active-Semi, Inc. For more information on this and other products, contact  
sales@active-semi.com or visit http://www.active-semi.com.  
is a registered trademark of Active-Semi.  
Innovative PowerTM  
- 38 -  
www.active-semi.com  
Active-Semi ProprietaryFor Authorized Recipients and Customers  
ActivePMUTM is a trademark of Active-Semi.  
I2CTM is a trademark of NXP.  
Copyright © 2014 Active-Semi, Inc.  

相关型号:

ACT8840QM188-T

Advanced PMU for Single-core Application Processors
ACTIVE-SEMI

ACT8840QM244-T

Advanced PMU for Single-core Application Processors
ACTIVE-SEMI

ACT8840_14

Advanced PMU for Single-core Application Processors
ACTIVE-SEMI

ACT8840_15

Advanced PMU for Single-core Application Processors
ACTIVE-SEMI

ACT88430QJ-T

Advanced PMU for Microcontrollers and Solid State Drive Applications
ACTIVE-SEMI

ACT88430QJ101-T

Advanced PMU for Microcontrollers and Solid State Drive Applications
ACTIVE-SEMI

ACT8846

Advanced PMU for Multi-core Application Processors
ACTIVE-SEMI

ACT8846QM460-T

Advanced PMU for Multi-core Application Processors
ACTIVE-SEMI

ACT8846QM468-T

Advanced PMU for Multi-core Application Processors
ACTIVE-SEMI

ACT8846QM468-T15

Advanced PMU for Multi-core Application Processors
ACTIVE-SEMI

ACT8846QM490-T

Advanced PMU for Multi-core Application Processors
ACTIVE-SEMI

ACT8846_14

Advanced PMU for Multi-core Application Processors
ACTIVE-SEMI