RT14100A-1CQG256B [ACTEL]

Field Programmable Gate Array, 1377 CLBs, 30000 Gates, 100MHz, CMOS, CQFP256, CERAMIC, CQFP-256;
RT14100A-1CQG256B
型号: RT14100A-1CQG256B
厂家: Actel Corporation    Actel Corporation
描述:

Field Programmable Gate Array, 1377 CLBs, 30000 Gates, 100MHz, CMOS, CQFP256, CERAMIC, CQFP-256

时钟 栅 可编程逻辑
文件: 总54页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v3.1  
RadTolerant FPGAs  
Features  
Up to 60 MHz System Performance  
Up to 228 User I/Os  
Up to Four Fast, Low-Skew Clock Networks  
General Characteristics  
Tested Total Ionizing Dose (TID) Survivability Level  
No Single Event Latch-Up Below a Minimum LET  
(Linear Energy Transfer) Threshold of 80 MeV-cm2/mg  
for All RT (RadTolerant) Devices  
Packages: 84-Pin, 132-Pin, 172-Pin, 196-Pin, and  
256-Pin Ceramic Quad Flat Pack  
Easy Logic Integration  
Nonvolatile, User Programmable  
Pin-Compatible Commercial Devices Available for  
Prototyping  
Highly Predictable Performance with 100%  
Automatic Place-and-Route  
100% Resource Utilization with 100% Pin-Locking  
Secure Programming Technology Prevents Reverse  
Engineering and Design Theft  
Offered as Class B and E-Flow (Actel Space Level  
Flow)  
QML Certified Devices  
100% Military Temperature Tested (–55°C to  
+125°C)  
Permanently Programmed for Operation on  
Power-Up  
Unique In-System Diagnostic and Verification  
Capability with Silicon Explorer  
High Density and Performance  
4,000 to 20,000 Logic Equivalent Gates  
2,000 to 10,000 ASIC Equivalent Gates  
Up to 85 MHz Internal Performance  
Product Family Profile  
Table 1 •  
Device  
RadTolerant Family  
RT1020  
RT1280A  
RT1425A  
RT1460A  
RT14100A  
Capacity  
System Gates  
6,000  
4,000  
2,000  
5,000  
50  
24,000  
16,000  
8.000  
20,000  
200  
7,500  
5,000  
2,500  
6,250  
60  
18,000  
12,000  
6,000  
15.000  
150  
30,000  
20,000  
10,000  
25,000  
250  
Logic Gates  
ASIC Equivalent Gates  
PLD Equivalent Gates  
TTL Equivalent Package  
20-Pin PAL Equivalent Packages  
20  
80  
25  
60  
100  
Logic Modules  
S-Modules  
C-Modules  
547  
N/A  
547  
1,232  
624  
608  
310  
160  
150  
848  
432  
416  
1,377  
697  
680  
User I/Os (Maximum)  
69  
20 MHz  
84  
140  
40 MHz  
172  
100  
60 MHz  
132  
168  
60 MHz  
196  
228  
60 MHz  
256  
Performance  
System Speed (Maximum)  
Packages (by Pin Count)  
CQFP  
October 2004  
i
© 2004 Actel Corporation  
See Actel’s website for the latest version of the datasheet  
RadTolerant FPGAs  
Ordering Information  
RT1280A  
CQ  
-
172  
E
Application (Temperature Range)  
C = Commercial (0 to +70˚C)  
M = Military (-55 to +125˚C)  
B = MIL-STD-883 Class B  
E = Extended Flow (Space Level)  
Package Lead Count  
Package Type  
CQ = Ceramic Quad Flat Pack (CQFP)  
Speed Grade  
Std = Standard Speed  
-1 = Approximately 15% Faster than Standard  
Part Number  
RT1020  
= 4,000 Gates—RadTolerant ACT 1  
RT1280A = 16,000 Gates—RadTolerant ACT 2  
RT1425A = 5,000 Gates—RadTolerant ACT 3  
RT1460A = 12,000 Gates—RadTolerant ACT 3  
RT14100A = 20,000 Gates—RadTolerant ACT 3  
A1020B = 4,000 Gates—ACT 1  
A1280A = 16,000 Gates—ACT 2  
A1425A = 5,000 Gates—ACT 3  
A1460A = 12,000 Gates—ACT 3  
A14100A = 20,000 Gates—ACT 3  
Device Resources  
User I/Os  
Gate Array  
Equivalent  
Gates  
CQFP  
84-Pin  
CQFP  
132-Pin  
CQFP  
172-Pin  
CQFP  
196-Pin  
CQFP  
256-Pin  
FPGA Device Type  
RT1020/A1020B  
Logic Modules  
547  
1,232  
310  
2,000  
8,000  
2,500  
6,000  
10,000  
69  
140  
RT1280A/A1280A  
RT1425A/A1425A  
RT1460A/A1460A  
RT14100A/A14100A  
100  
848  
168  
1,377  
228  
Note: Package Definition: CQFP = Ceramic Quad Flat Pack  
Contact your Actel sales representative for product availability.  
ii  
v3.1  
RadTolerant FPGAs  
Product Plan  
Speed Grade  
Application  
Commercial Military MIL-STD-883  
Extended  
Std  
–1*  
Flow  
ACT 1  
ACT 2  
ACT 3  
RT1020 Device  
84-Pin Ceramic Quad Flat Pack (CQFP)  
A1020B Device (Prototyping Use)  
84-Pin Ceramic Quad Flat Pack (CQFP)  
RT1280A Device  
172-Pin Ceramic Quad Flat Pack (CQFP)  
A1280A Device (Prototyping Use)  
172-Pin Ceramic Quad Flat Pack (CQFP)  
RT1425A Device  
132-Pin Ceramic Quad Flat Pack (CQFP)  
A1425A Device (Prototyping Use)  
132-Pin Ceramic Quad Flat Pack (CQFP)  
RT1460A Device  
196-Pin Ceramic Quad Flat Pack (CQFP)  
A1460A Device (Prototyping Use)  
196-Pin Ceramic Quad Flat Pack (CQFP)  
RT14100A Device  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A14100A Device (Prototyping Use)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
Note: Contact your Actel sales representative for product availability. Availability: = Available, – Symbol = Not Planned  
* Speed Grade: –1 = Approx. 15% faster than Standard  
v3.1  
iii  
RadTolerant FPGAs  
Table of Contents  
RadTolerant FPGAs  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Radiation Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
QML Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
RadTolerant Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
The RT1020 Logic Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14  
Sequential Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15  
RT1020, A1020B Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17  
RT1280A, A1280A Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
RT1425A, A1425A Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22  
RT1460A, A1460A Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25  
RT14100A, A14100A Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31  
Package Pin Assignments  
84-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
132-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
172-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
196-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
256-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Export Administration Regulations (EAR) or International Traffic in Arms  
Regulations (ITAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
iv  
v3.1  
RadTolerant FPGAs  
RadTolerant FPGAs  
General Description  
Actel builds the most reliable field programmable gate  
arrays (FPGAs) in the industry, with overall antifuse  
reliability ratings of less than 10 failures-in-time (FITs),  
corresponding to a useful life of more than 40 years.  
Actel FPGAs are production-proven, with more than five  
million devices shipped and more than one trillion  
antifuses manufactured. Actel devices are fully tested  
prior to shipment, with an outgoing defect level of only  
122 ppm (further reliability data is available in the Actel  
Device Reliability Report).  
These devices also have fully pin- and function-  
compatible commercially-equivalent devices for easy and  
inexpensive prototyping. The A1425A-CQ132C is used for  
the RT1425A, the A1460A-CQ196C is used for the  
RT1460A, and the A14100A-CQ256C is used for the  
RT14100A.  
Radiation Survivability  
Total dose results are summarized in two ways. The first  
method summarizes by the maximum total dose level  
that is reached when the parts fail to meet a device  
specification but remain functional. For Actel FPGAs, the  
parameter that exceeds the specification first is the  
standby supply current (ICC). The second method  
summarizes by the maximum total dose that is reached  
prior to the functional failure of the device.  
Additionally, the programmable architecture of these  
devices offers high performance, design flexibility, and  
fast and inexpensive prototyping—all without the  
expense of test vectors, NRE charges, long lead times,  
and schedule and cost penalties for design refinements.  
Device Description  
The Actel RT devices have varying total-dose radiation  
survivability. The ability of these devices to survive  
radiation effects is both device- and lot-dependent. The  
user must evaluate and determine the applicability of  
these devices for specific design and environmental  
requirements.  
The RT1020 device contains the same architecture as the  
A1020, A1020A, and A1020B devices. The architecture, a  
combinatorial logic module, is a logic structure with 8 inputs  
and 1 output. The logic itself is comprised of a 4-input MUX,  
as described in Figure 1-3 on page 1-4. In addition, since  
the RT1020 device contains the same number of gates and  
I/Os and has the same operating voltage as its commercial  
equivalent (A1020B), an inexpensive commercial grade  
A1020B-CQ84 device can be used during the prototype  
phase, and replaced by the RT1020 in the flight units.  
Typical results for the RT1020 device are ~100krads (Si)  
for standby ICC and >100krads for functional failure. The  
RT1280A device has results from 4 to 10krads (Si) for  
standby ICC, and 7 to 18krads for functional failure.  
Typical results for ACT 3 devices are 10 to 28krads for ICC  
and 20 to 77krads for functional failure.  
,
The RT1280A device uses the A1280A die from the ACT 2  
family of FPGAs. It utilizes a two-module architecture,  
consisting of combinatorial modules (C-modules) and  
sequential modules (S-modules) optimized for both  
combinatorial and sequential designs. Based on Actel’s  
patented channeled array architecture, the RT1280A has  
8,000 ASIC-equivalent gates and 140 user I/Os.  
Actel will provide total dose radiation testing along with  
the test data on each pedigreed lot that is available for  
sale. These reports are available on our website, or you  
can contact your local sales representative to receive a  
copy. A listing of available lots and devices is also  
provided. These results are provided only for reference  
and for customer information.  
The RT1280A device is fully pin- and function-compatible  
with the commercially-equivalent A1280A-CQ172C device  
for easy, inexpensive prototyping.  
For a radiation performance summary, see Radiation  
Performance of Actel Products on the Actel Website. This  
summary also shows single event upset (SEU) and single  
event latch-up (SEL) testing that has been performed on  
Actel FPGAs.  
The RT1425A, RT1460A and RT14100A devices use the  
A1425A, A1460A and A14100A dies, respectively. These  
devices are derived from the ACT 3 family of FPGAs,  
which also utilizes the two-module channeled array  
architecture, and offers faster performance than the  
RT1280A.  
v3.1  
1-1  
RadTolerant FPGAs  
Actel's Designer software is a place-and-route tool and  
provides a comprehensive suite of backend support tools  
for FPGA development. The Designer software includes  
QML Certification  
Actel has achieved full QML certification, demonstrating  
that quality management, procedures, processes, and  
controls are in place and comply with MIL-PRF-38535, the  
performance specification used by the Department of  
Defense for monolithic integrated circuits. QML  
certification is an example of Actel's commitment to  
supplying the highest quality products for all types of  
high-reliability, military and space applications.  
timing-driven place-and-route, and  
a
world-class  
integrated static timing analyzer and constraints editor.  
With the Designer software, a user can select and lock  
package pins while only minimally impacting the results of  
place-and-route. Additionally, the back-annotation flow is  
compatible with all the major simulators and the  
simulation results can be cross-probed with Silicon Explorer  
II, Actel’s integrated verification and logic analysis tool.  
Another tool included in the Designer software is the  
ACTgen macro builder, which easily creates popular and  
commonly used logic functions for implementation into  
your schematic or HDL design. Actel's Designer software is  
compatible with the most popular FPGA design entry and  
verification tools from companies such as Mentor Graphics,  
Synplicity, Synopsys, and Cadence Design Systems. The  
Designer software is available for both the Windows and  
UNIX operating systems.  
Many suppliers of microelectronics components have  
implemented QML as their primary worldwide business  
system. Appropriate use of this system not only helps in  
the implementation of advanced technologies, but also  
allows for quality, reliable and cost-effective logistics  
support throughout the QML products life cycles.  
Disclaimer  
All radiation performance information is provided for  
information purposes only and is not guaranteed. The  
total dose effects are lot-dependent, and Actel does not  
guarantee that future devices will continue to exhibit  
similar radiation characteristics. In addition, actual  
performance can vary widely due to a variety of factors,  
including but not limited to characteristics of the orbit,  
radiation environment, proximity to satellite exterior,  
amount of inherent shielding from other sources within  
the satellite, and actual bare die variations. For these  
reasons, Actel does not guarantee any level of radiation  
survivability, and it is solely the responsibility of the  
customer to determine whether the device will meet the  
requirements of the specific design.  
RadTolerant Architecture  
The Actel architecture is composed of fine-grained logic  
modules that produce fast, efficient logic designs. All  
devices are composed of logic modules, routing  
resources, clock networks, and I/O modules, which are  
the building blocks for fast logic designs.  
Logic Modules  
These RadTolerant devices contain two types of logic  
modules, combinatorial (C-modules) and sequential  
(S-modules). RT1020 and A1020B devices contain only C-  
modules.  
The C-module, shown in Figure 1-1, implements EQ 1-1:  
Development Tool Support  
Y = !S1*!S0*D00+!S1*S0*D01+S1*!S0*D10+S1*S0*D11  
T
he HiRel devices are fully supported by both the Actel  
EQ 1-1  
Libero™ Integrated Design Environment (IDE) and  
Designer FPGA Development software. Actel Libero IDE  
where:  
is  
a
design management environment, seamlessly  
S0 = A0 * B0  
S1 = A1+ B1  
integrating design tools while guiding the user through  
the design flow, managing all design and log files, and  
passing necessary design data among tools. Libero IDE  
allows users to integrate both schematic and HDL  
synthesis into a single flow and verify the entire design  
in a single environment. Libero IDE includes Synplify® for  
Actel from Synplicity®, ViewDraw® for Actel from  
Mentor Graphics, ModelSim® HDL Simulator from  
A0  
B0  
S0  
D00  
D01  
Y
Mentor  
Graphics®,  
WaveFormer  
Lite™  
from  
D10  
D11  
SynaptiCAD™, and Designer software from Actel. Refer  
to the Libero IDE flow diagram for more information.  
S1  
A1  
B1  
Figure 1-1 C-Module Implementation  
1-2  
v3.1  
RadTolerant FPGAs  
The S-module, shown in Figure 1-2, is designed to  
implement high-speed sequential functions within a  
single logic module. The S-module implements the same  
combinatorial logic function as the C-module while  
adding a sequential element. The sequential element can  
Flip-flops can also be created using two C-modules. The  
SEU characteristics differ between an S-module flip-flop  
and a flip-flop created using two C-modules. For details  
see the Design Techniques for RadHard Field  
Programmable Gate Arrays application note.  
be configured as either  
a D-type flip-flop or a  
transparent latch. To increase flexibility, the S-module  
register can be bypassed so it implements purely  
combinatorial logic.  
D00  
D01  
D00  
D01  
OUT  
Y
D
Q
Y
D
Q
OUT  
D10  
D11  
S1  
D10  
D11  
S1  
S0  
S0  
GATE  
CLR  
Up to 7-Input Function Plus D-Type Flip-Flop with Clear  
Up to 7-Input Function Plus Latch  
D00  
D01  
D0  
Y
OUT  
Y
D
Q
OUT  
D10  
S0  
D1  
D11  
S1  
GATE  
CLR  
S
Up to 8-Input Function (Same as C-Module)  
Up to 4-Input Function Plus Latch with Clear  
Figure 1-2 S-Module Implementation  
v3.1  
1-3  
RadTolerant FPGAs  
The Actel Designer software development tools provide  
a design library of I/O macros. The I/O macro library  
provides macro functions that can implement all I/O  
configurations supported by the RadTolerant FPGAs.  
The RT1020 Logic Module  
The RT1020 logic module is an 8-input, 1-output logic  
circuit chosen for the wide range of functions it  
implements and for its efficient use of interconnect  
routing resources (Figure 1-3).  
EN  
Q
D
PAD  
From Array  
G/CLK*  
Q
D
To Array  
G/CLK*  
* Can be configured as a Latch or D-Flip-Flop  
(Using C-Module)  
Figure 1-4 I/O Module  
Routing Structure  
Figure 1-3 RT1020 Logic Module  
The RadTolerant device architecture uses vertical and  
horizontal routing tracks to interconnect the various  
logic and I/O modules. These routing tracks are metal  
interconnects that may either be of continuous length or  
broken into segments. Varying segment lengths allow  
over 90% of the circuit interconnects to be made with  
only two antifuse connections. Segments can be joined  
together at the ends, using antifuses to increase their  
length up to the full length of the track. All  
interconnects can be accomplished with a maximum of  
four antifuses.  
The logic module can implement the four basic logic  
functions (NAND, AND, OR, and NOR) in gates of two,  
three, or four inputs. Each function may have many  
versions, with different combinations of active low  
inputs. The logic module can also implement a variety of  
D-latches, exclusivity functions, AND-ORs, and OR-ANDs.  
No dedicated hardwired latches or flip-flops are required  
in the array, since latches and flip-flops may be  
constructed from logic modules wherever needed in the  
application.  
Horizontal Routing  
I/O Modules  
Horizontal channels are located between the rows of  
modules, and are composed of several routing tracks.  
The horizontal routing tracks within the channel are  
divided into one or more segments. The minimum  
horizontal segment length is the width of a module-pair,  
and the maximum horizontal segment length is the full  
length of the channel. Any segment that spans more  
than one-third the row length is considered a long  
horizontal segment. A typical channel is shown in  
Figure 1-5 on page 1-5. Non-dedicated horizontal  
routing tracks are used to route signal nets. Dedicated  
routing tracks are used for the global clock networks,  
and for power and ground tie-off tracks.  
I/O modules provide the interface between the device  
pins and the logic array. A variety of user functions,  
determined by a library macro selection, can be  
implemented in the module (refer to the Macro Library  
Guide for more information). I/O modules contain a  
tristate buffer, and input and output latches that can be  
configured for input, output, or bidirectional pins  
(Figure 1-4).  
The RadTolerant devices contain flexible I/O structures in  
that each output pin has a dedicated output enable  
control. The I/O module can be used to latch input and/or  
output data, providing a fast setup time. In addition, the  
Actel Designer software tools can build a D-flip-flop,  
using a C-module, to register input and/or output  
signals.  
Vertical Routing  
Another set of routing tracks runs vertically through the  
module. There are three types of vertical tracks that can  
be divided into one or more segments: input, output,  
and long. Each segment in an input track is dedicated to  
the input of a particular module. Each segment in an  
1-4  
v3.1  
RadTolerant FPGAs  
output track is dedicated to the output of a particular  
module. Long segments are uncommitted and can be  
assigned during routing. Each output segment spans  
four channels (two above and two below), except near  
the top and bottom of the array where edge effects  
occur. Long vertical tracks contain either one or two  
segments. An example of vertical routing tracks and  
segments is shown in Figure 1-5.  
Antifuse Structures  
An antifuse is a "normally open" structure as opposed to  
the normally closed fuse structure used in PROMs  
(programmable read-only memory) or PALs (programmed  
array logic). The use of antifuses to implement a PLD  
(programmable logic device) results in highly testable  
structures, as well as efficient programming algorithms.  
The structure is highly testable because there are no pre-  
existing connections, enabling temporary connections to  
be made using pass transistors. These temporary  
connections can isolate individual antifuses to be  
programmed, and also isolate individual circuit structures  
to be tested. This can be done both before and after  
programming. For example, all metal tracks can be tested  
for continuity and shorts between adjacent tracks, and  
the functionality of all logic modules can be verified.  
Logic  
Modules  
Segmented  
Horizontal  
Routing  
Tracks  
Antifuses  
Vertical Routing Tracks  
Figure 1-5 Routing Structure  
Table 1-1 Actel MIL-STD-883 Product Flow  
883 - Class B  
Step  
1.  
Screen  
Internal Visual  
883 Method  
Requirement  
2010, Test Condition B  
1010, Test Condition C  
100%  
2.  
Temperature Cycling  
Constant Acceleration  
100%  
3.  
2001, Test Condition D or E, Y1, Orientation Only  
1014  
100%  
4.  
Seal  
a. Fine  
b. Gross  
100%  
100%  
5.  
6.  
7.  
8.  
Visual Inspection  
2009  
100%  
100%  
100%  
100%  
Pre-Burn-In Electrical Parameters  
Burn-in Test  
In accordance with applicable Actel device specification  
1015, Condition D, 160 hours @ 125°C or 80 hours @ 150°C  
In accordance with applicable Actel device specification  
Interim (Post-Burn-In) Electrical  
Parameters  
9.  
Percent Defective Allowable  
Final Electrical Test  
5%  
All Lots  
100%  
10.  
In accordance with applicable Actel device specification, which  
includes a, b, and c:  
a. Static Tests  
(1) 25°C (Subgroup 1, Table I)  
(2) –55°C and +125°C  
(Subgroups 2, 3, Table I)  
5005  
5005  
b. Functional Tests  
100%  
(1) 25°C (Subgroup 7, Table I)  
(2) –55°C and +125°C  
5005  
5005  
(Subgroups 8A and 8B, Table I)  
c. Switching Tests at 25°C  
(Subgroup 9, Table I)  
5005  
2009  
100%  
100%  
11.  
External Visual  
Note: When Destructive Physical Analysis (DPA) is performed on Class B devices, the step coverage requirement as specified in Method  
2018 must be waived.  
v3.1  
1-5  
RadTolerant FPGAs  
Table 1-2 Actel Extended Flow1  
Step  
1.  
Screen  
Wafer Lot Acceptance2  
Method  
5007 with Step Coverage Waiver  
2011, Condition D  
Requirement  
All Lots  
Sample  
100%  
2.  
Destructive In-Line Bond Pull3  
3.  
Internal Visual  
2010, Condition A  
4.  
Serialization  
100%  
5.  
Temperature Cycling  
1010, Condition C  
100%  
6.  
Constant Acceleration  
Particle Impact Noise Detection  
Radiographic  
2001, Condition D or E, Y1 Orientation Only  
2020, Condition A  
100%  
7.  
100%  
8.  
2012  
100%  
9.  
Pre-Burn-In Test  
In accordance with applicable Actel device specification  
1015, Condition D, 240 hours @ 125°C minimum  
In accordance with applicable Actel device specification  
1015, Condition C, 72 hours @ 150°C minimum  
In accordance with applicable Actel device specification  
5%, 3% Functional Parameters @ 25°C  
100%  
10.  
11.  
12.  
13.  
14.  
Burn-in Test  
100%  
Interim (Post-Burn-In) Electrical Parameters  
Reverse Bias Burn-In  
100%  
100%  
Interim (Post-Burn-In) Electrical Parameters  
100%  
Percent Defective Allowable (PDA)  
Calculation  
All Lots  
15.  
Final Electrical Test  
In accordance with Actel applicable device specification,  
which includes a, b, and c:  
100%  
100%  
a. Static Tests  
(1) 25°C (Subgroup 1, Table1)  
(2) –55°C and +125°C  
(Subgroups 2, 3, Table 1)  
5005  
5005  
100%  
b. Functional Tests  
(1) 25°C (Subgroup 7, Table 15)  
(2) –55°C and +125°C  
5005  
5005  
(Subgroups 8A and B, Table 1)  
100%  
100%  
c. Switching Tests at 25°C  
(Subgroup 9, Table 1)  
5005  
1014  
16.  
Seal  
a. Fine  
b. Gross  
17.  
External Visual  
2009  
100%  
Notes:  
1. Actel offers the extended flow for customers that require additional screening beyond the requirements of MIL-STD-883, Class B.  
Actel is compliant to the requirements of MIL-STD-883, Paragraph 1.2.1, and MIL-I-38535, Appendix A. Actel is offering this  
extended flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883 Class S. The  
exceptions to Method 5004 are shown in notes 2 and 3 below.  
2. Wafer lot acceptance is performed to Method 5007; however, the step coverage requirement as specified in Method 2018 must be  
waived.  
3. Method 5004 requires a 100 percent, non-destructive bond pull (Method 2023). Actel substitutes a destructive bond pull (Method  
2011), Condition D on a sample basis only.  
1-6  
v3.1  
RadTolerant FPGAs  
Absolute Maximum Ratings  
Stresses beyond those listed in this table may cause permanent damage to the device. Exposure to absolute maximum  
rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
recommended operating conditions.  
Table 1-3 Free Air Temperature Range  
Symbol  
VCC  
Parameter  
DC Supply Voltage1, 2, 3  
Limits  
–0.5 to +7.0  
–0.5 to VCC +0.5  
–0.5 to VCC +0.5  
20  
Units  
V
VI  
Input Voltage  
V
VO  
Output Voltage  
I/O Source Sink Current4  
V
IIO  
mA  
°C  
TSTG  
Notes:  
Storage Temperature  
–65 to +150  
1. VPP = VCC, except during device programming  
2. VSV = VCC, except during device programming  
3. VKS = GND, except during device programming  
4. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V  
or less than GND – 0.5 V, the internal protection diode will be forward-biased and can draw excessive current.  
Table 1-4 Recommended Operating Conditions  
Parameter  
Commercial  
Military  
–55 to +125  
10  
Units  
°C  
Temperature Range1  
Power Supply Tolerance2  
Notes:  
0 to +70  
5
%VCC  
1. Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military  
2. All power supplies must be in the recommended operating range. For more information, refer to the Power-Up and Power-Down  
Behavior of 54SX and RT54SX Devices application note.  
Table 1-5 Electrical Specifications  
Commercial  
Military  
Symbol  
Parameter  
HIGH Level Output  
Test Condition  
IOH = –4 mA (CMOS)  
IOH = –6 mA (CMOS)  
IOL = +6 mA (CMOS)  
TTL Inputs  
Min.  
Max.  
Min.  
Max.  
Units  
V
1, 2  
VOH  
3.7  
3.84  
V
1, 2  
VOL  
LOW Level Output  
0.33  
VCC + 0.3  
0.8  
0.4  
VCC + 0.3  
0.8  
V
VIH  
HIGH Level Input  
2.0  
–0.3  
–10  
–10  
2.0  
–0.3  
–10  
–10  
V
VIL  
LOW Level Input  
TTL Inputs  
V
IIN  
Input Leakage  
VI = VCC or GND  
VO = VCC or GND  
+10  
+10  
µA  
µA  
pF  
mA  
IOZ  
3-State Output Leakage  
I/O Capacitance3, 4  
Standby VCC Supply Current  
Dynamic VCC Supply Current  
+10  
+10  
CIO  
10  
10  
ICC(S)  
ICC(D)  
Notes:  
VI = VCC or GND, IO = 0 mA  
2
20  
See "Power Dissipation" on page 1-8.  
1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.  
2. Tested one output at a time, VCC = min.  
3. Not tested; for information only  
4. VOUT = 0V, f = 1 MHz  
v3.1  
1-7  
RadTolerant FPGAs  
Package Thermal Characteristics  
The device junction to case thermal characteristic is θjc,  
and the junction to ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two  
different air flow rates.  
Maximum junction temperature is 150°C.  
A sample calculation of the absolute maximum power  
dissipation allowed for a CQFP 172-pin package at  
military temperature is as follows:  
Max. junction temp. (°C) – Max. military temp.  
150°C – 125°C  
---------------------------------------------------------------------------------------------------------------------- = -------------------------------------- = 1.0W  
θ
(°C/W)  
25°C/W  
ja  
EQ 1-2  
Table 1-6 Package Thermal Characteristics  
θja  
Still Air  
θja  
Package Type  
Pin Count  
θjc  
7.8  
7.2  
6.8  
6.4  
6.2  
300 ft./min.  
Units  
Ceramic Quad Flat Pack  
8
40  
35  
25  
23  
20  
30  
25  
20  
15  
10  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
132  
172  
196  
256  
Static Power Component  
Power Dissipation  
Actel FPGAs have small static power components that  
result in power dissipation lower than that of PALs or  
PLDs. By integrating multiple PALs or PLDs into one  
FPGA, an even greater reduction in board-level power  
dissipation can be achieved.  
General Power Equation  
P = [ICCstandby + ICCactive] * VCC + IOL * VOL * N +  
IOH * (VCC – VOH) * M  
The power due to standby current is typically a small  
component of the overall power. Standby power is  
calculated below for commercial, worst-case conditions.  
EQ 1-3  
where:  
I
CCstandby is the current flowing when no inputs  
ICC  
VCC  
Power  
or outputs are changing.  
ICCactive is the current flowing due to CMOS  
switching.  
2 mA  
5.25 V  
10.5 mW  
The static power dissipated by TTL loads depends on the  
number of outputs driving HIGH or LOW and on the DC  
load current. Again, this value is typically small. For  
instance, a 32-bit bus sinking 4 mA at 0.33 V will  
generate 42 mW with all outputs driving LOW, and  
140 mW with all outputs driving HIGH.  
I
OL, IOH are TTL sink/source currents.  
OL, VOH are TTL level output voltages.  
N equals the number of outputs driving TTL loads  
to VOL  
M equals the number of outputs driving TTL loads  
to VOH  
V
.
.
Accurate values for N and M are difficult to determine  
because they depend on the family type, on design  
details, and on the system I/O. The power can be divided  
into two components: static and active.  
1-8  
v3.1  
RadTolerant FPGAs  
Active Power Component  
Equivalent Capacitance  
Power dissipation in CMOS devices is usually dominated  
by the active (dynamic) power dissipation. This  
component is frequency-dependent, a function of the  
logic and the external I/O. Active power dissipation  
results from charging internal chip capacitances of the  
interconnect, unprogrammed antifuses, module inputs,  
and module outputs, plus external capacitance due to PC  
board traces and load device inputs. An additional  
component of the active power dissipation is the totem  
pole current in CMOS transistor pairs. The net effect can  
be associated with an equivalent capacitance that can be  
combined with frequency and voltage to represent  
active power dissipation.  
The power dissipated by a CMOS circuit can be expressed  
by EQ 1-4:  
Power (uW) = CEQ * VCC2 * F  
EQ 1-4  
where:  
CEQ = Equivalent capacitance in pF  
VCC = Power supply in volts (V)  
F
= Switching frequency in MHz  
Equivalent capacitance is calculated by measuring ICCactive  
at a specified frequency and voltage for each circuit  
component of interest. Measurements are made over a  
range of frequencies at a fixed value of VCC. Equivalent  
capacitance is frequency-independent, so the results can  
be used over a wide range of operating conditions.  
Equivalent capacitance values are shown in Table 1-7  
.
Table 1-7 CEQ Values for Actel FPGAs  
RT1020,  
A1020B  
RT1280A,  
A1280A  
RT1425A, A1425A, RT1460A,  
A1460A, RT14100A, A14100A  
Modules (CEQM  
Input Buffers (CEQI  
Output Buffers (CEQO  
Routed Array Clock Buffer Loads (CEQCR  
Dedicated Clock Buffer Loads (CEQCD  
I/O Clock Buffer Loads (CEQCI  
)
3.7  
22.1  
32.1  
4.6  
5.8  
12.9  
23.8  
3.9  
6.7  
7.2  
)
)
10.4  
1.6  
)
)
n/a  
n/a  
0.7  
)
n/a  
n/a  
0.9  
v3.1  
1-9  
RadTolerant FPGAs  
To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic  
must be known. EQ 1-5 shows a piece-wise linear summation over all components. Since the RT1280A and A1280A  
have two routed array clocks, the dedicated_Clk and IO_Clk terms do not apply. For all other devices all terms apply.  
Power = VCC2 * [(m * CEQM* fm)modules + (n * CEQI* fn)inputs + (p * (CEQO+ CL) * fp)outputs + 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1  
*fq1)routed_Clk1 + 0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 + 0.5 * (s1 * CEQCD * fs1)dedicated_Clk + (s2 * CEQCI * fs2)IO_Clk  
EQ 1-5  
Table 1-8 Fixed Capacitance Values for Actel FPGAs (pF)  
r1 r2  
]
where:  
m
n
=
=
=
=
Number of logic modules switching at fm  
Number of input buffers switching at fn  
Number of output buffers switching at fp  
Device Type  
routed_Clk1 routed_Clk2  
RT1020, A1020B  
RT1280A, A1280A  
RT1425A, A1425A  
RT1460A, A1460A  
RT14100A, A14100A  
69  
168  
75  
n/a  
168  
75  
p
q1  
Number of clock loads on the first routed array  
clock  
165  
195  
165  
195  
q2  
=
Number of clock loads on the second routed array  
clock (not applicable for RT1020 or A1020B)  
r1  
r2  
=
=
Fixed capacitance due to first routed array clock  
Table 1-9 Fixed Clock Loads (s1/s2 ACT 3 Only)  
Fixed capacitance due to second routed array clock  
(not applicable for RT1020 or A1020B)  
s1  
s2  
Clock Loads  
on Dedicated on Dedicated  
Clock Loads  
s1  
=
=
Fixed number of clock loads on the dedicated array  
clock (not applicable for RT1020, A1020B,  
RT1280A, or A1280A)  
Device Type  
Array Clock  
I/O Clock  
RT1425A, A1425A  
RT1460A, A1460A  
RT14100A, A14100A  
160  
432  
697  
100  
s2  
Fixed number of clock loads on the dedicated  
I/O clock (not applicable for RT1020, A1020B,  
RT1280A, or A1280A)  
168  
228  
CEQM  
CEQI  
=
=
=
=
=
Equivalent capacitance of logic modules in pF  
Equivalent capacitance of input buffers in pF  
Equivalent capacitance of output buffers in pF  
Equivalent capacitance of routed array clock in pF  
CEQO  
CEQCR  
CEQCD  
Equivalent capacitance of dedicated array clock  
in pF  
CEQCI  
CL  
=
=
=
=
=
=
=
Equivalent capacitance of dedicated I/O clock in pF  
Output lead capacitance in pF  
fm  
Average logic module switching rate in MHz  
Average input buffer switching rate in MHz  
Average output buffer switching rate in MHz  
Average first routed array clock rate in MHz  
fn  
fp  
fq1  
fq2  
Average second routed array clock rate in MHz (not  
applicable for RT1020 or A1020B)  
fs1  
=
=
Average dedicated array clock rate in MHz (not  
applicable for RT1020, A1020B, RT1280A, or  
A1280A)  
fs2  
Average dedicated I/O clock rate in MHz  
(not applicable for RT1020, A1020B, RT1280A, or  
A1280A)  
1-10  
v3.1  
RadTolerant FPGAs  
Determining Average Switching Frequency  
To determine the switching frequency for a design, you must have a detailed understanding of the data input values  
to the circuit. The guidelines below are meant to represent worst-case scenarios; they can be generally used to predict  
the upper limits of power dissipation.  
RT1020, A1020B, RT1280A, A1280A  
Logic Modules (m)  
=
=
=
=
=
=
=
=
=
=
=
=
=
80% of Combinatorial Modules  
Input Switching (n)  
# Inputs/4  
Outputs Switching (p)  
# Outputs/4  
First Routed Array Clock Loads (q1)  
Second Routed Array Clock Loads (q2)  
Load Capacitance (CL)  
40% of Sequential Modules  
40% of Sequential Modules  
35 pF  
F/10  
F/5  
Average Logic Module Switching Rate (fm)  
Average Input Switching Rate (fn)  
Average Output Switching Rate (fp)  
Average First Routed Array Clock Rate (fq1  
F/10  
F
)
Average Second Routed Array Clock Rate (fq2  
Average Dedicated Array Clock Rate (fs1)  
Average Dedicated I/O Clock Rate (fs2)  
)
F/2  
n/a  
n/a  
RT1425A, A1425A, RT1460A, A1460A, RT14100A, A14100A  
Logic Modules (m)  
=
=
=
=
=
=
=
=
=
=
=
=
=
80% of Combinatorial Modules  
Input Switching (n)  
# Inputs/4  
Outputs Switching (p)  
# Outputs/4  
First Routed Array Clock Loads (q1)  
Second Routed Array Clock Loads (q2)  
Load Capacitance (CL)  
40% of Sequential Modules  
40% of Sequential Modules  
35 pF  
F/10  
F/5  
F/10  
F/2  
F/2  
F
Average Logic Module Switching Rate (fm)  
Average Input Switching Rate (fn)  
Average Output Switching Rate (fp)  
Average First Routed Array Clock Rate (fq1  
)
Average Second Routed Array Clock Rate (fq2  
Average Dedicated Array Clock Rate (fs1)  
Average Dedicated I/O Clock Rate (fs2)  
)
F
v3.1  
1-11  
RadTolerant FPGAs  
Input Delay  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delay  
Logic Module  
I/O Module  
I/O Module  
t
IRD2 = 1.9 ns  
t
INYL = 3.9 ns  
t
t
DLH = 8.3 ns  
t
IRD1 = 1.1 ns  
RD1 = 1.1 ns  
t
t
t
t
t
IRD4 = 3.9 ns  
PD = 3.6 ns  
RD2 = 1.8 ns  
ENHZ = 12.3 ns  
t
t
IRD8 = 8.1 ns  
CO = 3.6 ns  
RD4 = 3.9 ns  
t
RD8 = 8.1 ns  
ARRAY  
CLOCK  
t
FO = 128  
CKH = 6.9 ns  
F
MAX = 55 MHz  
Figure 1-6 RT1020, A1020B Timing Model  
Predicted  
Routing  
Delays  
Input Delays  
Output Delays  
Internal Delays  
I/O Module  
Combinatorial  
Logic Module  
I/O Module  
t
t
IRD2 = 7.2 ns  
INYL = 3.6 ns  
t
DLH = 14.0 ns  
t
t
t
t
RD1 = 2.4 ns  
RH2 = 3.4 ns  
RD4 = 5.1 ns  
RD8 = 9.2 ns  
D
G
Q
t
PD1 = 5.2 ns  
I/O Module  
t
DLH = 14.0 ns  
Sequential  
t
t
t
INH = 2.5 ns  
INSU = 3.5 ns  
INGL = 6.6 ns  
Logic Module  
Combin-  
D
Q
D
G
Q
atorial  
Logic  
t
t
RD1 = 2.4 ns  
ENHZ = 9.8 ns  
included  
in SUD  
t
t
t
t
OUTH = 0.0 ns  
OUTSU = 0.5 ns  
GLH = 12.5 ns  
t
t
t
SUD = 0.5 ns  
HD = 0.0 ns  
CO = 5.2 ns  
ARRAY  
CLOCKS  
FO = 32  
t
CKH = 13.3 ns  
F
MAX = 73 MHz  
Notes:  
1. *Values shown for RT1280A –1 at worst-case military conditions.  
2. † Input module predicted routing delay  
Figure 1-7 RT1280A, A1280A Timing Model*  
1-12  
v3.1  
RadTolerant FPGAs  
Predicted  
Routing  
Delays  
Input Delays  
Internal Delays  
Output Delays  
I/O Module  
Combinatorial  
Logic Module  
I/O Module  
t
t
IRD2 = 1.9 ns  
INY = 4.2 ns  
t
DHS = 9.2 ns  
t
t
t
RD1 = 1.3 ns  
RD4 = 2.6 ns  
RD8 = 4.2 ns  
t
PD = 3.0 ns  
D
Q
I/O Module  
t
DHS = 9.2 ns  
t
Sequential  
Logic Module  
INH = 0.0 ns  
t
t
INSU = 2.1 ns  
ICKY = 7.0 ns  
t
RD1 = 1.3 ns  
D
Q
D
Q
Combinatorial  
Logic  
included  
t
ENZHS = 7.7 ns  
t
in SUD  
t
t
t
OUTH = 1.2 ns  
OUTSU = 1.2 ns  
CKHS = 14.4 ns  
t
t
t
SU = 1.0 ns  
HD = 0.6 ns  
CO = 3.0 ns  
ARRAY  
CLOCK  
t
HCKH = 5.5 ns  
F
HMAX = 100 MHz  
t
I/O CLOCK  
IOCKH = 3.5 ns  
(pad-to-pad)  
F
IOMAX = 100 MHz  
Note: *Values shown for RT14100A –1 at worst-case military conditions.  
Figure 1-8 RT1425A, A1425A, RT1460A, A1460A, RT14100A, A14100A Timing Model*  
v3.1  
1-13  
RadTolerant FPGAs  
Parameter Measurement  
E
D
PAD To AC Test Loads (shown below)  
TRIBUFF  
VCC  
VCC  
VCC  
GND  
GND  
GND  
90%  
E
In  
50% 50%  
VOH  
E
50% 50%  
VCC  
50% 50%  
VOH  
1.5V  
1.5V  
PAD  
VOL  
PAD  
PAD  
GND  
1.5V  
10%  
1.5V  
VOL  
t
t
t
t
t
t
DLH  
DHL  
ENZL  
ENLZ  
ENZH  
ENHZ  
Figure 1-9 Output Buffer Delays  
Load 2  
Load 1  
(Used to measure propagation delay)  
(Used to measure rising/falling edges)  
VCC  
GND  
To the Output under Test  
t
t
R to VCC for PLZ/ PZL  
50 pF  
To the Output under Test  
t
t
R to GND for PHZ/ PZH  
R = 1 k  
Ω
50 pF  
Figure 1-10 AC Test Load  
S
A
B
Y
Y
PA D  
INBUF  
VCC  
S, A or B 50% 50%  
GND  
3V  
VCC  
50%  
PAD  
0V  
Y
50%  
1.5V 1.5V  
VCC  
GND  
t
t
50%  
PLH  
PHL  
Y
GND  
50%  
VCC  
50%  
Y
50%  
GND  
t
t
INYL  
INYH  
t
t
PHL  
PLH  
Figure 1-11 Input Buffer Delays  
Figure 1-12 Combinatorial Macro Delays  
1-14  
v3.1  
RadTolerant FPGAs  
Sequential Timing Characteristics  
D
E
PRE  
CLR  
Y
CLK  
(Positive Edge Triggered)  
t
HD  
D1  
t
t
t
A
SUD  
WCLKA  
G, CLK  
t
SUENA  
t
HENA  
E
t
co  
Q
t
RS  
PRE, CLR  
t
WASYN  
D represents all data functions involving A, B, and S for multiplexed flip-flops.  
Figure 1-13 Flip-Flops and Latches (RT1280A, A1280A)  
D
E
PRESET  
CLR  
Y
CLK  
(Positive Edge Triggered)  
t
HD  
D1  
t
t
t
A
SUD  
WCLKA  
G, CLK  
t
SUENA  
t
HENA  
E
t
CO  
Q
t
CLR  
CLR  
t
WASYN  
D represents all data functions involving A, B, and S for multiplexed flip-flops.  
Figure 1-14 Flip-Flops and Latches (RT1425A, A1425A, RT1460A, A1460A, RT14100A, A14100A)  
v3.1  
1-15  
RadTolerant FPGAs  
PAD  
G
IBDL  
PAD  
CLK  
CLKBUF  
PAD  
G
t
INH  
t
INSU  
t
HEXT  
CLK  
t
SUEXT  
Figure 1-15 Input Buffer Latches (R1280A, A1280A)  
D
G
PAD  
OBDLHS  
D
t
OUTSU  
G
t
OUTH  
Figure 1-16 Output Buffer Latches (RT1280A, A1280A)  
1-16  
v3.1  
RadTolerant FPGAs  
RT1020, A1020B Timing Characteristics  
Table 1-10 RT1020, A1020B Logic and Input Modules  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Units  
Logic Module Propagation Delays  
tPD1  
tPD2  
tCO  
tGO  
tRS  
Single Module  
3.6  
8.4  
3.6  
3.6  
3.6  
ns  
ns  
ns  
ns  
ns  
Dual Module Macros  
Sequential Clock to Q  
Latch G to Q  
Flip-Flop (Latch) Reset to Q  
Logic Module Predicted Routing Delays1  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.1  
1.8  
2.6  
3.9  
8.1  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing2  
tSUD  
Flip-Flop (Latch) Data Input Setup  
Flip-Flop (Latch) Data Input Hold  
6.9  
0.0  
6.9  
0.0  
8.4  
8.4  
17.5  
ns  
ns  
3
tHD  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
tA  
Flip-Flop (Latch) Enable Setup  
ns  
Flip-Flop (Latch) Enable Hold  
ns  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
Flip-Flop Clock Input Period  
ns  
ns  
ns  
fMAX  
Flip-Flop (Latch) Clock Frequency (FO = 128)  
55  
MHz  
Input Module Propagation Delays  
tINYH  
Pad to Y High  
3.9  
3.9  
ns  
ns  
tINYL  
Pad to Y Low  
Input Module Predicted Routing Delays1, 3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.1  
1.8  
2.6  
3.9  
8.1  
ns  
ns  
ns  
ns  
ns  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
2. Setup times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. Optimization techniques may further reduce delays by 0 to 4ns.  
4. The hold time for the DFME1A macro may be greater than 0ns. Use the Designer software 3.0 (or later) Timer to check the hold  
time for this macro.  
v3.1  
1-17  
RadTolerant FPGAs  
Table 1-11 RT1020, A1020B Output Module  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Units  
Global Clock Network  
tCKH  
tCKL  
tPWH  
tPWL  
tCKSW  
tP  
Input Low to High  
FO = 16  
FO = 128  
6.0  
6.9  
ns  
ns  
Input High to Low  
FO = 16  
FO = 128  
7.9  
8.7  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
FO = 16  
FO = 128  
8.0  
8.4  
ns  
FO = 16  
FO = 128  
1.5  
2.2  
ns  
FO = 16  
FO = 128  
1.5  
2.3  
ns  
Minimum Period  
FO = 16  
FO = 128  
16.3  
17.5  
ns  
fMAX  
Maximum Frequency  
FO = 16  
FO = 128  
60  
50  
MHz  
TTL Output Module Timing1  
tDLH  
Data to Pad High  
8.3  
9.3  
ns  
ns  
tDHL  
Data to Pad Low  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
dTHL  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
Delta Low to High  
Delta High to Low  
8.1  
ns  
9.8  
ns  
12.3  
11.1  
0.07  
0.10  
ns  
ns  
ns/pF  
ns/pF  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
9.8  
7.9  
ns  
ns  
tDHL  
Data to Pad Low  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
Delta Low to High  
Delta High to Low  
7.4  
ns  
10.2  
12.3  
11.1  
0.13  
0.07  
ns  
ns  
ns  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Delays based on 35pF loading.  
2. SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.  
1-18  
v3.1  
RadTolerant FPGAs  
RT1280A, A1280A Timing Characteristics  
Table 1-12 RT1280A, A1280A Logic Module  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Logic Module Propagation Delays1  
tPD1  
tCO  
tGO  
tRS  
Single Module  
5.2  
5.2  
5.2  
5.2  
6.1  
6.1  
6.1  
6.1  
ns  
ns  
ns  
ns  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.4  
3.4  
4.2  
5.1  
9.2  
2.8  
4.0  
ns  
ns  
ns  
ns  
ns  
4.9  
6.0  
10.8  
Logic Module Sequential Timing 3, 4  
tSUD  
Flip-Flop (Latch) Data Input Setup  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
Flip-Flop Clock Input Period  
0.5  
0.0  
1.3  
0.0  
7.4  
7.4  
16.4  
2.5  
3.5  
0.0  
0.5  
0.5  
0.0  
1.3  
0.0  
8.6  
8.6  
22.1  
2.5  
3.5  
0.0  
0.5  
ns  
ns  
tHD  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
tA  
ns  
ns  
ns  
ns  
ns  
tINH  
Input Buffer Latch Hold  
ns  
tINSU  
Input Buffer Latch Setup  
ns  
tOUTH  
tOUTSU  
fMAX  
Notes:  
Output Buffer Latch Hold  
ns  
Output Buffer Latch Setup  
ns  
Flip-Flop (Latch) Clock Frequency  
60  
41  
MHz  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
v3.1  
1-19  
RadTolerant FPGAs  
Table 1-13 RT1280A, A1280A Input Module  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Input Module Propagation Delays  
tINYH  
tINYL  
tINGH  
tINGL  
Pad-to-Y HIGH  
Pad-to-Y LOW  
G-to-Y HIGH  
G-to-Y LOW  
4.0  
3.6  
6.9  
6.6  
4.7  
4.3  
8.1  
7.7  
ns  
ns  
ns  
ns  
Input Module Predicted Routing Delays1  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
6.2  
7.2  
7.3  
8.4  
ns  
ns  
ns  
ns  
ns  
7.7  
9.1  
8.9  
10.5  
15.2  
12.9  
Global Clock Network  
tCKH Input LOW to HIGH  
FO = 32  
FO = 384  
13.3  
17.9  
15.7  
21.1  
ns  
ns  
tCKL  
Input HIGH to LOW  
FO = 32  
FO = 384  
13.3  
18.2  
15.7  
21.4  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
FO = 32  
FO = 384  
6.9  
7.9  
8.1  
9.3  
ns  
FO = 32  
FO = 384  
6.9  
7.9  
8.1  
9.3  
ns  
FO = 32  
FO = 384  
0.6  
3.1  
0.6  
3.1  
ns  
Input Latch External Setup  
Input Latch External Hold  
Minimum Period  
FO = 32  
FO = 384  
0.0  
0.0  
0.0  
0.0  
ns  
FO = 32  
FO = 384  
8.6  
13.8  
8.6  
13.8  
ns  
FO = 32  
FO = 384  
13.7  
16.0  
16.2  
18.9  
ns  
fMAX  
Note:  
Maximum Frequency  
FO = 32  
FO = 384  
73  
63  
62  
53  
MHz  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may  
further reduce delays by 0 to 4ns.  
1-20  
v3.1  
RadTolerant FPGAs  
Table 1-14 RT1280A, A1280A Output Module  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Min. Max.  
Std Speed  
Min. Max.  
Parameter  
TTL Output Module Timing1  
Description  
Units  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
dTLH  
dTHL  
Data-to-Pad HIGH  
Data-to-Pad LOW  
11.0  
13.9  
12.3  
16.1  
9.8  
13.0  
16.4  
14.4  
19.0  
11.5  
13.6  
14.6  
18.2  
0.11  
0.20  
ns  
ns  
Enable-to-Pad Z to HIGH  
Enable-to-Pad Z to LOW  
Enable-to-Pad HIGH to Z  
Enable-to-Pad LOW to Z  
G-to-Pad HIGH  
ns  
ns  
ns  
11.5  
12.4  
15.5  
0.09  
0.17  
ns  
ns  
G-to-Pad LOW  
ns  
Delta LOW to HIGH  
ns/pF  
ns/pF  
Delta HIGH to LOW  
CMOS Output Module Timing1  
tDLH  
Data-to-Pad HIGH  
14.0  
11.7  
12.3  
16.1  
9.8  
16.5  
13.7  
14.4  
19.0  
11.5  
13.6  
14.6  
18.2  
0.20  
0.15  
ns  
ns  
tDHL  
Data-to-Pad LOW  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
Enable-to-Pad Z to HIGH  
Enable-to-Pad Z to LOW  
Enable-to-Pad HIGH to Z  
Enable-to-Pad LOW to Z  
G-to-Pad HIGH  
ns  
ns  
ns  
11.5  
12.4  
15.5  
0.17  
0.12  
ns  
ns  
tGHL  
G-to-Pad LOW  
ns  
dTLH  
dTHL  
Notes:  
Delta LOW to HIGH  
Delta HIGH to LOW  
ns/pF  
ns/pF  
1. Delays based on 50pF loading.  
2. SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.  
v3.1  
1-21  
RadTolerant FPGAs  
RT1425A, A1425A Timing Characteristics  
Table 1-15 RT1425A, A1425A Logic and Input Modules  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Logic Module Propagation Delays1  
tPD  
Internal Array Module  
Sequential Clock to Q  
Asynchronous Clear to Q  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
ns  
ns  
ns  
tCO  
tCLR  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.9  
2.1  
2.6  
4.2  
1.5  
2.1  
2.5  
2.9  
4.9  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing  
tSUD  
Flip-Flop (Latch) Data Input Setup  
0.9  
0.0  
0.9  
0.0  
3.8  
3.8  
7.9  
1.0  
0.0  
1.0  
0.0  
4.4  
4.4  
9.3  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
Flip-Flop (Latch) Enable Hold  
Asynchronous Pulse Width  
Flip-Flop Clock Pulse Width  
Flip-Flop Clock Input Period  
Flip-Flop Clock Frequency  
tSUENA  
tHENA  
tWASYN  
tWCLKA  
tA  
ns  
ns  
ns  
ns  
ns  
fMAX  
125  
100  
MHz  
Input Module Propagation Delays  
tINY  
Input Data Pad to Y  
4.2  
7.0  
7.0  
7.0  
7.0  
4.9  
8.2  
8.2  
8.2  
8.2  
ns  
ns  
ns  
ns  
ns  
tICKY  
tOCKY  
tICLRY  
tOCLRY  
Input Reg IOCLK Pad to Y  
Output Reg IOCLK Pad to Y  
Input Asynchronous Clear to Y  
Output Asynchronous Clear to Y  
Input Module Predicted Routing Delays2, 3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.9  
2.1  
2.6  
4.2  
1.5  
2.1  
2.5  
2.9  
4.9  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
3. Optimization techniques may further reduce delays by 0 to 4ns.  
1-22  
v3.1  
RadTolerant FPGAs  
Table 1-16 RT1425A, A1425A Logic and Input Modules  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
I/O Module Sequential Timing  
tINH  
Input F-F Data Hold (w.r.t. IOCLK Pad)  
Input F-F Data Setup (w.r.t. IOCLK Pad)  
Input Data Enable Hold (w.r.t. IOCLK Pad)  
Input Data Enable Setup (w.r.t. IOCLK Pad)  
Output F-F Data Hold (w.r.t. IOCLK Pad)  
Output F-F Data Setup (w.r.t. IOCLK Pad)  
Output Data Enable Hold (w.r.t. IOCLK Pad)  
Output Data Enable Setup (w.r.t. IOCLK Pad)  
0.0  
2.1  
0.0  
8.7  
1.1  
1.1  
0.5  
2.0  
0.0  
2.4  
0.0  
10.0  
1.2  
1.2  
0.6  
2.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tINSU  
tIDEH  
tIDESU  
tOUTH  
tOUTSU  
tODEH  
tODESU  
TTL Output Module Timing1  
tDHS  
Data to Pad, High Slew  
7.5  
11.9  
6.0  
8.9  
ns  
ns  
tDLS  
Data to Pad, Low Slew  
14.0  
7.0  
tENZHS  
tENZLS  
tENHSZ  
tENLSZ  
tCKHS  
tCKLS  
Enable to Pad, Z to H/L, High Slew  
Enable to Pad, Z to H/L, Low Slew  
Enable to Pad, H/L to Z, High Slew  
Enable to Pad, H/L to Z, Low Slew  
IOCLK Pad to Pad H/L, High Slew  
IOCLK Pad to Pad H/L, Low Slew  
Delta Low to High, High Slew  
Delta Low to High, Low Slew  
Delta High to Low, High Slew  
Delta High to Low, Low Slew  
ns  
10.9  
9.9  
12.8  
11.6  
11.6  
11.6  
17.4  
0.04  
0.08  
0.06  
0.08  
ns  
ns  
9.9  
ns  
10.5  
15.7  
0.04  
0.07  
0.05  
0.07  
ns  
ns  
dTLHHS  
dTLHLS  
dTHLHS  
dTHLLS  
ns/pF  
ns/pF  
ns/pF  
ns/pF  
CMOS Output Module Timing1  
tDHS  
Data to Pad, High Slew  
9.2  
17.3  
7.7  
10.8  
20.3  
9.1  
ns  
ns  
tDLS  
Data to Pad, Low Slew  
tENZHS  
tENZLS  
tENHSZ  
tENLSZ  
tCKHS  
tCKLS  
Enable to Pad, Z to H/L, High Slew  
Enable to Pad, Z to H/L, Low Slew  
Enable to Pad, H/L to Z, High Slew  
Enable to Pad, H/L to Z, Low Slew  
IOCLK Pad to Pad H/L, High Slew  
IOCLK Pad to Pad H/L, Low Slew  
Delta Low to High, High Slew  
Delta Low to High, Low Slew  
Delta High to Low, High Slew  
Delta High to Low, Low Slew  
ns  
13.1  
9.9  
15.5  
11.6  
11.6  
13.7  
20.1  
0.07  
0.13  
0.05  
0.06  
ns  
ns  
10.5  
12.5  
18.1  
0.06  
0.11  
0.04  
0.05  
ns  
ns  
ns  
dTLHHS  
dTLHLS  
dTHLHS  
dTHLLS  
Note:  
ns/pF  
ns/pF  
ns/pF  
ns/pF  
1. Delays based on 35pF loading.  
v3.1  
1-23  
RadTolerant FPGAs  
Table 1-17 RT1425A, A1425A Clock Networks  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Min. Max.  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Units  
Dedicated (Hard-Wired) I/O Clock Network  
tIOCKH  
Input Low to High  
3.0  
3.5  
ns  
(Pad to I/O Module Input)  
tIOPWH  
tIOPWL  
tIOSAPW  
tIOCKSW  
tIOP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Minimum Asynchronous Pulse Width  
Maximum Skew  
3.9  
3.9  
3.9  
4.4  
4.4  
4.4  
ns  
ns  
ns  
0.5  
0.5  
ns  
Minimum Period  
7.9  
9.3  
ns  
fIOMAX  
Maximum Frequency  
125  
100  
MHz  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input Low to High  
4.6  
4.6  
5.3  
5.3  
ns  
ns  
(Pad to S-Module Input)  
tHCKL  
Input High to Low  
(Pad to S-Module Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.9  
3.9  
4.4  
4.4  
ns  
ns  
0.4  
0.4  
ns  
Minimum Period  
7.9  
9.3  
ns  
fHMAX  
Maximum Frequency  
125  
100  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRPWH  
tRPWL  
tRCKSW  
tRP  
Input Low to High (FO=64)  
5.5  
6.0  
6.4  
7.0  
ns  
ns  
Input High to Low (FO=64)  
Minimum Pulse Width High (FO=64)  
Minimum Pulse Width Low (FO=64)  
Maximum Skew (FO=128)  
4.9  
4.9  
5.7  
5.7  
ns  
ns  
1.1  
1.2  
85  
ns  
Minimum Period (FO=64)  
10.1  
11.6  
ns  
fRMAX  
Maximum Frequency (FO=64)  
100  
MHz  
Clock-to-Clock Skews  
tIOHCKSW  
tIORCKSW  
tHRCKSW  
I/O Clock to H-Clock Skew  
0.0  
0.0  
3.0  
3.0  
0.0  
0.0  
3.0  
3.0  
ns  
ns  
I/O Clock to R-Clock Skew  
H-Clock to R-Clock Skew  
(FO = 64)  
(FO = 50% max.)  
0.0  
0.0  
1.0  
3.0  
0.0  
0.0  
1.0  
3.0  
ns  
ns  
Note: SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.  
1-24  
v3.1  
RadTolerant FPGAs  
RT1460A, A1460A Timing Characteristics  
Table 1-18 RT1460A, A1460A Logic and Input Modules  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Logic Module Propagation Delays1  
tPD  
Internal Array Module  
Sequential Clock to Q  
Asynchronous Clear to Q  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
ns  
ns  
ns  
tCO  
tCLR  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.9  
2.1  
2.6  
4.2  
1.5  
2.1  
2.5  
2.9  
4.9  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing  
tSUD  
Flip-Flop (Latch) Data Input Setup  
0.9  
0.0  
0.9  
0.0  
4.8  
4.8  
9.9  
1.0  
0.0  
1.0  
0.0  
5.6  
5.6  
11.6  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
Flip-Flop (Latch) Enable Hold  
Asynchronous Pulse Width  
Flip-Flop Clock Pulse Width  
Flip-Flop Clock Input Period  
Flip-Flop Clock Frequency  
tSUENA  
tHENA  
tWASYN  
tWCLKA  
tA  
ns  
ns  
ns  
ns  
ns  
fMAX  
100  
85  
MHz  
Input Module Propagation Delays  
tINY  
Input Data Pad to Y  
4.2  
7.0  
7.0  
7.0  
7.0  
4.9  
8.2  
8.2  
8.2  
8.2  
ns  
ns  
ns  
ns  
ns  
tICKY  
tOCKY  
tICLRY  
tOCLRY  
Input Reg IOCLK Pad to Y  
Output Reg IOCLK Pad to Y  
Input Asynchronous Clear to Y  
Output Asynchronous Clear to Y  
Predicted Input Routing Delays2, 3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.9  
2.1  
2.6  
4.2  
1.5  
2.1  
2.5  
2.9  
4.9  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
3. Optimization techniques may further reduce delays by 0 to 4ns.  
v3.1  
1-25  
RadTolerant FPGAs  
Table 1-19 RT1460A, A1460A I/O and Output Modules  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
I/O Module Sequential Timing  
tINH  
Input F-F Data Hold (w.r.t. IOCLK Pad)  
0.0  
2.1  
0.0  
8.7  
1.1  
1.1  
0.5  
2.0  
0.0  
2.4  
0.0  
10.0  
1.2  
1.2  
0.6  
2.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tINSU  
Input F-F Data Setup (w.r.t. IOCLK Pad)  
Input Data Enable Hold (w.r.t. IOCLK Pad)  
Input Data Enable Setup (w.r.t. IOCLK Pad)  
Output F-F Data Hold (w.r.t. IOCLK Pad)  
Output F-F Data Setup (w.r.t. IOCLK Pad)  
Output Data Enable Hold (w.r.t. IOCLK Pad)  
Output Data Enable Setup (w.r.t. IOCLK Pad)  
tIDEH  
tIDESU  
tOUTH  
tOUTSU  
tODEH  
tODESU  
TTL Output Module Timing1  
tDHS  
Data to Pad, High Slew  
7.5  
8.9  
ns  
ns  
tDLS  
Data to Pad, Low Slew  
11.9  
6.0  
14.0  
7.0  
tENZHS  
tENZLS  
tENHSZ  
tENLSZ  
tCKHS  
tCKLS  
Enable to Pad, Z to H/L, High Slew  
Enable to Pad, Z to H/L, Low Slew  
Enable to Pad, H/L to Z, High Slew  
Enable to Pad, H/L to Z, Low Slew  
IOCLK Pad to Pad H/L, High Slew  
IOCLK Pad to Pad H/L, Low Slew  
Delta Low to High, High Slew  
Delta Low to High, Low Slew  
Delta High to Low, High Slew  
Delta High to Low, Low Slew  
ns  
10.9  
11.5  
10.9  
11.6  
17.8  
0.04  
0.07  
0.05  
0.07  
12.8  
13.5  
12.8  
13.4  
19.8  
0.04  
0.08  
0.06  
0.08  
ns  
ns  
ns  
ns  
ns  
dTLHHS  
dTLHLS  
dTHLHS  
dTHLLS  
ns/pF  
ns/pF  
ns/pF  
ns/pF  
CMOS Output Module Timing1  
tDHS  
Data to Pad, High Slew  
9.2  
10.8  
20.3  
9.1  
ns  
ns  
tDLS  
Data to Pad, Low Slew  
17.3  
7.7  
tENZHS  
tENZLS  
tENHSZ  
tENLSZ  
tCKHS  
tCKLS  
Enable to Pad, Z to H/L, High Slew  
Enable to Pad, Z to H/L, Low Slew  
Enable to Pad, H/L to Z, High Slew  
Enable to Pad, H/L to Z, Low Slew  
IOCLK Pad to Pad H/L, High Slew  
IOCLK Pad to Pad H/L, Low Slew  
Delta Low to High, High Slew  
Delta Low to High, Low Slew  
Delta High to Low, High Slew  
Delta High to Low, Low Slew  
ns  
13.1  
10.9  
10.9  
14.1  
20.2  
0.06  
0.11  
0.04  
0.05  
15.5  
12.8  
12.8  
16.0  
22.4  
0.07  
0.13  
0.05  
0.06  
ns  
ns  
ns  
ns  
ns  
dTLHHS  
dTLHLS  
dTHLHS  
dTHLLS  
Note:  
ns/pF  
ns/pF  
ns/pF  
ns/pF  
1. Delays based on 35pF loading.  
1-26  
v3.1  
RadTolerant FPGAs  
Table 1-20 RT1460A, A1460A Clock Networks  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Min. Max.  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Units  
Dedicated (Hard-Wired) I/O Clock Network  
tIOCKH  
tIOPWH  
tIOPWL  
tIOSAPW  
tIOCKSW  
tIOP  
Input Low to High (Pad to I/O Module Input)  
3.5  
4.1  
ns  
ns  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Minimum Asynchronous Pulse Width  
Maximum Skew  
4.8  
4.8  
3.9  
5.7  
5.7  
4.4  
ns  
ns  
0.9  
1.0  
85  
ns  
Minimum Period  
9.9  
11.6  
ns  
fIOMAX  
Maximum Frequency  
100  
MHz  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input Low to High  
(Pad to S-Module Input)  
5.5  
5.5  
6.4  
6.4  
ns  
tHCKL  
Input High to Low  
(Pad to S-Module Input)  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
4.8  
4.8  
5.7  
5.7  
ns  
0.9  
1.0  
85  
ns  
Minimum Period  
9.9  
11.6  
ns  
fHMAX  
Maximum Frequency  
100  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRPWH  
tRPWL  
tRCKSW  
tRP  
Input Low to High (FO=256)  
9.0  
9.0  
10.5  
10.5  
ns  
ns  
Input High to Low (FO=256)  
Min. Pulse Width High (FO=256)  
Min. Pulse Width Low (FO=256)  
Maximum Skew (FO=128)  
6.3  
6.3  
7.1  
7.1  
ns  
ns  
1.9  
75  
2.1  
65  
ns  
Minimum Period (FO=256)  
12.9  
14.5  
ns  
fRMAX  
Maximum Frequency (FO=256)  
MHz  
Clock-to-Clock Skews  
tIOHCKSW  
tIORCKSW  
tHRCKSW  
I/O Clock to H-Clock Skew  
0.0  
0.0  
3.0  
5.0  
0.0  
0.0  
3.0  
5.0  
ns  
ns  
I/O Clock to R-Clock Skew  
H-Clock to R-Clock Skew  
(FO = 64)  
(FO = 50% max.)  
0.0  
0.0  
1.0  
3.0  
0.0  
0.0  
1.0  
3.0  
ns  
ns  
Note: SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.  
v3.1  
1-27  
RadTolerant FPGAs  
RT14100A, A14100A Timing Characteristics  
Table 1-21 RT14100A, A14100A Logic and Input Modules  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Logic Module Propagation Delays1  
tPD  
Internal Array Module  
Sequential Clock-to-Q  
Asynchronous Clear-to-Q  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
ns  
ns  
ns  
tCO  
tCLR  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.9  
2.1  
2.6  
4.2  
1.5  
2.1  
2.5  
2.9  
4.9  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing  
tSUD  
Flip-Flop (Latch) Data Input Setup  
1.0  
0.6  
1.0  
0.6  
4.8  
4.8  
9.9  
1.0  
0.6  
1.0  
0.6  
5.6  
5.6  
11.6  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
Flip-Flop (Latch) Enable Hold  
Asynchronous Pulse Width  
Flip-Flop Clock Pulse Width  
Flip-Flop Clock Input Period  
Flip-Flop Clock Frequency  
tSUENA  
tHENA  
tWASYN  
tWCLKA  
tA  
ns  
ns  
ns  
ns  
ns  
fMAX  
100  
85  
MHz  
Input Module Propagation Delays  
tINY  
Input Data Pad-to-Y  
4.2  
7.0  
7.0  
7.0  
7.0  
4.9  
8.2  
8.2  
8.2  
8.2  
ns  
ns  
ns  
ns  
ns  
tICKY  
tOCKY  
tICLRY  
tOCLRY  
Input Reg IOCLK Pad-to-Y  
Output Reg IOCLK Pad-to-Y  
Input Asynchronous Clear-to-Y  
Output Asynchronous Clear-to-Y  
Input Module Predicted Routing Delays2, 3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.9  
2.1  
2.6  
4.2  
1.5  
2.1  
2.5  
2.9  
4.9  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
3. Optimization techniques may further reduce delays by 0 to 4ns.  
1-28  
v3.1  
RadTolerant FPGAs  
Table 1-22 RT14100A, A14100A I/O and Output Modules  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
I/O Module Sequential Timing  
tINH  
Input Flip-Flop Data Hold  
0.0  
2.1  
0.0  
8.7  
1.2  
1.2  
0.6  
2.4  
0.0  
2.4  
0.0  
10.0  
1.2  
1.2  
0.6  
2.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tINSU  
Input Flip-Flop Data Setup  
Input Data Enable Hold  
tIDEH  
tIDESU  
tOUTH  
tOUTSU  
tODEH  
tODESU  
Input Data Enable Setup  
Output Flip-Flop Data Hold  
Output Flip-Flop Data Setup  
Output Data Enable Hold  
Output Data Enable Setup  
TTL Output Module Timing1  
tDHS  
Data-to-Pad, High Slew  
7.5  
8.9  
ns  
ns  
tDLS  
Data-to-Pad, Low Slew  
11.9  
6.0  
14.0  
7.0  
tENZHS  
tENZLS  
tENHSZ  
tENLSZ  
tCKHS  
tCKLS  
Enable-to-Pad, Z to H/L, High Slew  
Enable-to-Pad, Z to H/L, Low Slew  
Enable-to-Pad, H/L to Z, High Slew  
Enable-to-Pad, H/L to Z, Low Slew  
IOCLK Pad-to-Pad H/L, High Slew  
IOCLK Pad-to-Pad H/L, Low Slew  
Delta LOW to HIGH, High Slew  
Delta LOW to HIGH, Low Slew  
Delta HIGH to LOW, High Slew  
Delta HIGH to LOW, Low Slew  
ns  
10.9  
11.9  
10.9  
12.2  
17.8  
0.04  
0.07  
0.05  
0.07  
12.8  
14.0  
12.8  
14.0  
17.8  
0.04  
0.08  
0.06  
0.08  
ns  
ns  
ns  
ns  
ns  
dTLHHS  
dTLHLS  
dTHLHS  
dTHLLS  
ns/pF  
ns/pF  
ns/pF  
ns/pF  
CMOS Output Module Timing1  
tDHS  
Data-to-Pad, High Slew  
9.2  
10.8  
20.3  
9.1  
ns  
ns  
tDLS  
Data-to-Pad, Low Slew  
17.3  
7.7  
tENZHS  
tENZLS  
tENHSZ  
tENLSZ  
tCKHS  
tCKLS  
Enable-to-Pad, Z to H/L, High Slew  
Enable-to-Pad, Z to H/L, Low Slew  
Enable-to-Pad, H/L to Z, High Slew  
Enable-to-Pad, H/L to Z, Low Slew  
IOCLK Pad-to-Pad H/L, High Slew  
IOCLK Pad-to-Pad H/L, Low Slew  
Delta LOW to HIGH, High Slew  
Delta LOW to HIGH, Low Slew  
Delta HIGH to LOW, High Slew  
Delta HIGH to LOW, Low Slew  
ns  
13.1  
11.6  
10.9  
14.4  
20.2  
0.06  
0.11  
0.04  
0.05  
15.5  
14.0  
12.8  
16.0  
22.4  
0.07  
0.13  
0.05  
0.06  
ns  
ns  
ns  
ns  
ns  
dTLHHS  
dTLHLS  
dTHLHS  
dTHLLS  
Note:  
ns/pF  
ns/pF  
ns/pF  
ns/pF  
1. Delays based on 35 pF loading.  
v3.1  
1-29  
RadTolerant FPGAs  
Table 1-23 RT14100A, A14100A Clock Networks  
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C  
–1 Speed  
Std Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Dedicated (Hard-Wired) I/O Clock Network  
tIOCKH  
Input LOW to HIGH  
(Pad to I/O Module Input)  
3.5  
4.1  
ns  
ns  
tIOPWH  
tIOPWL  
tIOSAPW  
tIOCKSW  
tIOP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Minimum Asynchronous Pulse Width  
Maximum Skew  
4.8  
4.8  
3.9  
5.7  
5.7  
4.4  
ns  
ns  
0.9  
1.0  
85  
ns  
Minimum Period  
9.9  
11.6  
ns  
fIOMAX  
Maximum Frequency  
100  
MHz  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to S-Module Input)  
5.5  
5.5  
6.4  
6.4  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to S-Module Input)  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
4.8  
4.8  
5.7  
5.7  
ns  
0.9  
1.0  
85  
ns  
Minimum Period  
9.9  
11.6  
ns  
fHMAX  
Maximum Frequency  
100  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRPWH  
tRPWL  
tRCKSW  
tRP  
Input LOW to HIGH (FO=256)  
9.0  
9.0  
10.5  
10.5  
ns  
ns  
Input HIGH to LOW (FO=256)  
Min. Pulse Width HIGH (FO=256)  
Min. Pulse Width LOW (FO=256)  
Maximum Skew (FO=128)  
6.3  
6.3  
7.1  
7.1  
ns  
ns  
1.9  
75  
2.1  
65  
ns  
Minimum Period (FO=256)  
12.9  
14.5  
ns  
fRMAX  
Maximum Frequency (FO=256)  
MHz  
Clock-to-Clock Skews  
tIOHCKSW  
tIORCKSW  
tHRCKSW  
I/O Clock to H-Clock Skew  
0.0  
0.0  
3.5  
5.0  
0.0  
0.0  
3.5  
5.0  
ns  
ns  
ns  
I/O Clock to R-Clock Skew  
H-Clock to R-Clock Skew  
(FO = 64)  
(FO = 50% max.)  
0.0  
0.0  
1.0  
3.0  
0.0  
0.0  
1.0  
3.0  
Note: SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.  
1-30  
v3.1  
RadTolerant FPGAs  
Pin Descriptions  
CLK  
Clock (Input)  
IOPCL  
Dedicated (Hard-Wired) I/O  
Preset/Clear (Input)  
RT1020 and A1020B only. TTL clock input for global clock  
distribution networks. The clock input is buffered prior  
to clocking the logic modules. This pin can also be used  
as an I/O.  
Not applicable for RT1020, A1020B, RT1280A and  
A1280A. TTL input for I/O preset or clear. This global  
input is directly wired to the preset and clear inputs of all  
I/O registers. This pin functions as an I/O when no I/O  
preset or clear macros are used.  
CLKA  
Clock A (Input)  
Not applicable for RT1020 and A1020B. TTL clock input  
for global clock distribution networks. The clock input is  
buffered prior to clocking the logic modules. This pin can  
also be used as an I/O.  
MODE  
Mode (Input)  
The MODE pin controls the use of diagnostic pins (DCLK,  
PRA, PRB, SDI). When the MODE pin is HIGH, the special  
functions are active. When the MODE pin is LOW, the  
pins function as I/Os. To provide debugging capability,  
the MODE pin should be terminated to GND through a  
10 kΩ resistor so that the MODE pin can be pulled HIGH  
when required.  
CLKB  
Clock B (Input)  
Not applicable for RT1020 and A1020B. TTL clock input  
for global clock distribution networks. The clock input is  
buffered prior to clocking the logic modules. This pin can  
also be used as an I/O.  
NC  
No Connection  
DCLK  
Diagnostic Clock (Input)  
This pin is not connected to circuitry within the device.  
TTL clock input for diagnostic probe and device  
programming. DCLK is active when the MODE pin is  
HIGH. This pin functions as an I/O when the MODE pin is  
LOW.  
PRA, I/O  
Probe A (Output)  
The Probe A pin is used to output data from any user-  
defined design node within the device. This independent  
diagnostic pin can be used in conjunction with the Probe  
B pin to allow real-time diagnostic output of any signal  
path within the device. The Probe A pin can be used as a  
user-defined I/O when verification has been completed.  
The pin’s probe capabilities can be permanently disabled  
to protect programmed design confidentiality. PRA is  
accessible when the MODE pin is HIGH. This pin functions  
as an I/O when the MODE pin is LOW.  
GND  
Ground  
LOW supply voltage.  
HCLK  
Dedicated (Hard-Wired) Array Clock  
(Input)  
Not applicable for RT1020, A1020B, RT1280A and  
A1280A. TTL clock input for sequential modules. This  
input is directly wired to each S-module, offering clock  
speeds independent of the number of S-modules being  
driven. This pin can also be used as an I/O.  
PRB, I/O  
Probe B (Output)  
The Probe B pin is used to output data from any user-  
defined design node within the device. This independent  
diagnostic pin can be used in conjunction with the Probe  
A pin to allow real-time diagnostic output of any signal  
path within the device. The Probe B pin can be used as a  
user-defined I/O when verification has been completed.  
The pin’s probe capabilities can be permanently disabled  
to protect programmed design confidentiality. PRB is  
accessible when the MODE pin is HIGH. This pin functions  
as an I/O when the MODE pin is LOW.  
I/O  
Input/Output (Input, Output)  
I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Input and output levels are  
compatible with standard TTL and CMOS specifications.  
In the RT1020, A1020B, RT1280, and A1280A devices,  
unused I/O pins are automatically driven LOW. In the  
RT1425, A1425A, RT1460, A1460A, RT14100, and  
A14100A devices, unused I/O pins are automatically  
tristated.  
SDI  
Serial Data Input (Input)  
IOCLK  
Dedicated (Hard-Wired) I/O Clock (Input)  
Serial data input for diagnostic probe and device  
programming. SDI is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
Not applicable for RT1020, A1020B, RT1280A and  
A1280A. TTL clock input for I/O modules. This input is  
directly wired to each I/O module, offering clock speeds  
independent of the number of I/O modules being driven.  
This pin can also be used as an I/O.  
V
5.0 V Supply Voltage  
CC  
HIGH supply voltage.  
v3.1  
1-31  
RadTolerant FPGAs  
Package Pin Assignments  
84-Pin CQFP  
Pin #1  
Index  
84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
84-Pin  
CQFP  
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42  
Figure 2-1 84-Pin CQFP (Top View)  
v3.1  
2-1  
RadTolerant FPGAs  
84-Pin CQFP  
A1020B  
84-Pin CQFP  
84-Pin CQFP  
Pin  
RT1020  
Pin  
A1020B  
RT1020  
Pin  
A1020B  
RT1020  
Number  
Function  
NC  
I/O  
Function  
Number  
Function  
Function  
Number  
Function  
Function  
1
NC  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
I/O  
I/O  
I/O  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
I/O  
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
GND  
GND  
I/O  
GND  
GND  
I/O  
I/O  
I/O  
8
I/O  
I/O  
9
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
VCC  
I/O  
VCC  
VCC  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA, I/O  
I/O  
CLKA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MODE  
VCC  
VCC  
I/O  
MODE  
VCC  
VCC  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SDI, I/O  
SDI, Input  
I/O  
I/O  
DCLK, I/O DCLK, Input  
I/O  
I/O  
PRA, I/O  
PRB, I/O  
I/O  
PRA, I/O  
PRB, I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
VCC  
I/O  
I/O  
2-2  
v3.1  
RadTolerant FPGAs  
132-Pin CQFP  
132131130129128127126125124  
107106105104103102101100  
Pin #1  
Index  
1
2
3
4
5
6
7
8
99  
98  
97  
96  
95  
94  
93  
92  
132-Pin  
CQFP  
25  
75  
74  
73  
72  
71  
70  
69  
68  
67  
26  
27  
28  
29  
30  
31  
32  
33  
34 35 36 37 38 39 40 41 42  
59 60 61 62 63 64 65 66  
Figure 2-2 132-Pin CQFP (Top View)  
v3.1  
2-3  
RadTolerant FPGAs  
132-Pin CQFP  
A1425A  
132-Pin CQFP  
132-Pin CQFP  
Pin  
Number  
RT1425A  
Function  
Pin  
Number  
A1425A  
Function  
RT1425A  
Function  
Pin  
Number  
A1425A  
Function  
RT1425A  
Function  
Function  
1
NC  
NC  
GND  
SDI, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
GND  
I/O  
GND  
I/O  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
I/O  
I/O  
I/O  
I/O  
2
GND  
SDI, I/O  
I/O  
3
I/O  
I/O  
I/O  
I/O  
4
I/O  
I/O  
GND  
VCC  
I/O  
GND  
VCC  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
GND  
VCC  
I/O  
GND  
VCC  
I/O  
I/O  
I/O  
8
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
9
MODE  
GND  
VCC  
I/O  
MODE  
GND  
VCC  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
HCLK, I/O  
I/O  
HCLK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
GND  
VCC  
GND  
I/O  
VCC  
GND  
VCC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
GND  
VCC  
I/O  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
I/O  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IOCLK, I/O  
NC  
IOCLK, I/O  
NC  
I/O  
I/O  
IOPCL, I/O  
GND  
NC  
IOPCL, I/O  
GND  
NC  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-4  
v3.1  
RadTolerant FPGAs  
132-Pin CQFP  
Pin  
Number  
A1425A  
Function  
RT1425A  
Function  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
GND  
VCC  
I/O  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA, I/O  
CLKB, I/O  
PRA, I/O  
I/O  
CLKA, I/O  
CLKB, I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
I/O  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCLK, I/O  
NC  
DCLK, I/O  
NC  
v3.1  
2-5  
RadTolerant FPGAs  
172-Pin CQFP  
172 171 170 169 168 167 166 165 164  
137 136 135 134 133 132 131 130  
Pin #1  
Index  
1
2
3
4
5
6
7
8
129  
128  
127  
126  
125  
124  
123  
122  
172-Pin  
CQFP  
35  
36  
37  
38  
39  
40  
41  
42  
43  
95  
94  
93  
92  
91  
90  
89  
88  
87  
44 45 46 47 48 49 50 51 52  
79 80 81 82 83 84 85 86  
Figure 2-3 172-Pin CQFP (Top View)  
2-6  
v3.1  
RadTolerant FPGAs  
172-Pin CQFP  
172-Pin CQFP  
172-Pin CQFP  
Pin  
Number  
A1280A  
Function  
RT1280A  
Function  
Pin  
Number  
A1280A  
Function  
RT1280A  
Function  
Pin  
Number  
A1280A  
Function  
RT1280A  
Function  
1
MODE  
I/O  
MODE  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
2
3
I/O  
I/O  
4
I/O  
I/O  
5
I/O  
I/O  
6
I/O  
I/O  
7
GND  
I/O  
GND  
I/O  
8
9
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
VCC  
I/O  
GND  
VCC  
VCC  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
v3.1  
2-7  
RadTolerant FPGAs  
172-Pin CQFP  
A1280A  
172-Pin CQFP  
Pin  
Number  
RT1280A  
Function  
Pin  
Number  
A1280A  
Function  
RT1280A  
Function  
Function  
GND  
VCC  
GND  
VCC  
VCC  
I/O  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
GND  
VCC  
GND  
VCC  
VCC  
I/O  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
I/O  
I/O  
CLKA, I/O  
VCC  
GND  
I/O  
CLKA, I/O  
VCC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
CLKB, I/O  
I/O  
CLKB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SDI, I/O  
I/O  
SDI, I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-8  
v3.1  
RadTolerant FPGAs  
196-Pin CQFP  
196 195 194 193 192 191 190 189 188  
155 154 153 152 151 150 149 148  
Pin #1  
Index  
1
2
3
4
5
6
7
8
147  
146  
145  
144  
143  
142  
141  
140  
196-Pin  
CQFP  
41  
42  
43  
44  
45  
46  
47  
48  
49  
107  
106  
105  
104  
103  
102  
101  
100  
99  
50 51 52 53 54 55 56 57 58  
91 92 93 94 95 96 97 98  
Figure 2-4 196-Pin CQFP (Top View)  
v3.1  
2-9  
RadTolerant FPGAs  
196-Pin CQFP  
A1460A  
Function  
GND  
SDI, I/O  
I/O  
196-Pin CQFP  
196-Pin CQFP  
Pin  
Number  
RT1460A  
Function  
Pin  
Number  
A1460A  
Function  
RT1460A  
Function  
Pin  
Number  
A1460A  
Function  
RT1460A  
Function  
1
GND  
SDI, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
GND  
VCC  
VCC  
I/O  
I/O  
GND  
VCC  
VCC  
I/O  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
I/O  
I/O  
I/O  
I/O  
2
3
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
HCLK, I/O  
I/O  
HCLK, I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MODE  
VCC  
GND  
I/O  
MODE  
VCC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
IOPCL, I/O  
GND  
I/O  
IOPCL, I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-10  
v3.1  
RadTolerant FPGAs  
196-Pin CQFP  
196-Pin CQFP  
196-Pin CQFP  
Pin  
Number  
A1460A  
Function  
RT1460A  
Function  
Pin  
Number  
A1460A  
Function  
RT1460A  
Function  
Pin  
Number  
A1460A  
Function  
RT1460A  
Function  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
I/O  
I/O  
I/O  
I/O  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
I/O  
I/O  
I/O  
I/O  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
VCC  
GND  
I/O  
VCC  
VCC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IOCLK, I/O  
GND  
I/O  
IOCLK, I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCLK, I/O  
DCLK, I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
GND  
GND  
VCC  
VCC  
GND  
GND  
VCC  
CLKA, I/O  
CLKB, I/O  
PRA, I/O  
I/O  
CLKA, I/O  
CLKB, I/O  
PRA, I/O  
I/O  
v3.1  
2-11  
RadTolerant FPGAs  
256-Pin CQFP  
256 255 254 253 252 251 250 249 248  
200 199 198 197 196 195 194 193  
Pin #1  
Index  
1
2
3
4
5
6
7
8
192  
191  
190  
189  
188  
187  
186  
185  
256-Pin  
CQFP  
56  
57  
58  
59  
60  
61  
62  
63  
64  
137  
136  
135  
134  
133  
132  
131  
130  
129  
65 66 67 68 69 70 71 72 73  
121 122 123 124 125 126 127 128  
Figure 2-5 256-Pin CQFP (Top View)  
2-12  
v3.1  
RadTolerant FPGAs  
256-Pin CQFP  
256-Pin CQFP  
256-Pin CQFP  
Pin  
Number  
A14100A  
Function  
RT14100A  
Function  
Pin  
Number  
A14100A  
Function  
RT14100A  
Function  
Pin  
Number  
A14100A  
Function  
RT14100A  
Function  
1
GND  
SDI, I/O  
I/O  
GND  
SDI, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
I/O  
I/O  
I/O  
I/O  
2
3
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
MODE  
I/O  
MODE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
GND  
VCC  
GND  
VCC  
I/O  
PRB, I/O  
GND  
VCC  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
HCLK, I/O  
I/O  
HCLK, I/O  
I/O  
I/O  
I/O  
VCC  
GND  
VCC  
GND  
I/O  
VCC  
GND  
VCC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
v3.1  
2-13  
RadTolerant FPGAs  
256-Pin CQFP  
A14100A  
256-Pin CQFP  
256-Pin CQFP  
Pin  
Number  
RT14100A  
Function  
Pin  
Number  
A14100A  
Function  
RT14100A  
Function  
Pin  
Number  
A14100A  
Function  
RT14100A  
Function  
Function  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
I/O  
I/O  
I/O  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
VCC  
I/O  
VCC  
I/O  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IOCLK, I/O  
GND  
I/O  
IOCLK, I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
GND  
VCC  
I/O  
GND  
VCC  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IOPCL, I/O  
GND  
I/O  
IOPCL, I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
GND  
VCC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-14  
v3.1  
RadTolerant FPGAs  
256-Pin CQFP  
256-Pin CQFP  
Pin  
Number  
A14100A  
Function  
RT14100A  
Function  
Pin  
Number  
A14100A  
Function  
RT14100A  
Function  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
I/O  
I/O  
I/O  
I/O  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA, I/O  
CLKB, I/O  
VCC  
GND  
VCC  
GND  
PRA, I/O  
I/O  
CLKA, I/O  
CLKB, I/O  
VCC  
GND  
VCC  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCLK, I/O  
DCLK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
v3.1  
2-15  
RadTolerant FPGAs  
Datasheet Information  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous Version Changes in Current Version (v3.1)  
Page  
The following pins changed in the "84-Pin CQFP" table:  
v3.0  
2-2  
Pin 61 change to SDI, Input for the RT1020 device.  
Pin 62 change to DCLK, Input for the RT1020 device.  
The following pins changed in the "256-Pin CQFP" table:  
2-14  
Pin 124 change to I/O for the A14100A and RT14100A devices.  
Pin 127 changed to IOPCL for the A14100A and RT14100A devices.  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general product  
information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the general family  
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and  
for specifications that do not differ between the two families.  
Export Administration Regulations (EAR) or International Traffic in  
Arms Regulations (ITAR)  
The product described in this datasheet could be subject to either the Export Administration Regulations (EAR) or in  
some cases the International Traffic in Arms Regulations (ITAR). They could require an approved export license prior to  
export from the United States. An export includes release of product or disclosure of technology to a foreign national  
inside or outside the United States.  
v3.1  
3-1  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
39th Floor, One Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +44 (0)1276 401 450  
Fax +44 (0)1276 401 490  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852.227.35712  
Fax +852.227.35999  
5172139-4/10.04  

相关型号:

RT14100A-CQ256B

Field Programmable Gate Array, 1377 CLBs, 20000 Gates, 85MHz, 1377-Cell, CMOS, CQFP256, CERAMIC, CQFP-256
MICROSEMI

RT14100A-CQ256E

Field Programmable Gate Array, 1377 CLBs, 20000 Gates, 85MHz, 1377-Cell, CMOS, CQFP256, CERAMIC, CQFP-256
MICROSEMI

RT14100A-CQG256B

Field Programmable Gate Array, 1377 CLBs, 20000 Gates, 85MHz, CMOS, CQFP256, CERAMIC, CQFP-256
MICROSEMI

RT14100A-STDCQ256B

Field Programmable Gate Array, 1377 CLBs, 30000 Gates, 85MHz, 1377-Cell, CMOS, CQFP256, CERAMIC, QFP-256
MICROSEMI

RT14100A-STDCQ256C

Field Programmable Gate Array, 85MHz, 1377-Cell, CMOS, CQFP256,
MICROSEMI

RT14100A-STDCQ256E

Field Programmable Gate Array (FPGA)
ETC

RT14100A-STDCQ256M

Field Programmable Gate Array, 85MHz, 1377-Cell, CMOS, CQFP256,
MICROSEMI

RT14100A-STDCQG256B

Field Programmable Gate Array, 1377 CLBs, 30000 Gates, 85MHz, CMOS, CQFP256, CERAMIC, QFP-256
ACTEL

RT14100A-STDCQG256B

Field Programmable Gate Array, 1377 CLBs, 30000 Gates, 85MHz, CMOS, CQFP256, CERAMIC, QFP-256
MICROSEMI

RT1410B6

GTL, GTL+, AGTL+ Terminator RoHS Compliant Parts Available
CTS

RT1410B6TR13

GTL, GTL+, AGTL+ Terminator RoHS Compliant Parts Available
CTS

RT1410B6TR7

GTL, GTL+, AGTL+ Terminator RoHS Compliant Parts Available
CTS