RH1020-CQ84V [ACTEL]

Field Programmable Gate Array, 547 CLBs, 2000 Gates, 50MHz, 547-Cell, CMOS, CQFP84, CERAMIC, QFP-84;
RH1020-CQ84V
型号: RH1020-CQ84V
厂家: Actel Corporation    Actel Corporation
描述:

Field Programmable Gate Array, 547 CLBs, 2000 Gates, 50MHz, 547-Cell, CMOS, CQFP84, CERAMIC, QFP-84

时钟 栅 可编程逻辑
文件: 总30页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v3.1  
Radiation-Hardened FPGAs  
Significantly Greater Densities than Discrete Logic  
Devices  
Replaces up to 200 TTL Packages  
Features  
Guaranteed Total Dose Radiation Capability  
Low Single Event Upset Susceptibility  
High Dose Rate Survivability  
Latch-Up Immunity Guaranteed  
QML Qualified Devices  
Commercial Devices Available for Prototyping and  
Pre-Production Requirements  
Design Library with over 500 Macro Functions  
Single-Module Sequential Functions  
Wide-Input Combinatorial Functions  
Up to Two High-Speed, Low-Skew Clock Networks  
Two In-Circuit Diagnostic Probe Pins Support  
Speed Analysis to 50 MHz  
Non-Volatile, User Programmable Devices  
Fabricated in 0.8 µ Epitaxial Bulk CMOS Process  
Unique In-System Diagnostic and Verification  
Capability with Silicon Explorer  
Gate Capacities of 2,000 and 8,000 Gate Array  
Gates  
More Design Flexibility than Custom ASICs  
Product Family Profile  
Device  
RH1020  
RH1280  
Capacity  
System Gates  
3,000  
2,000  
6,000  
50  
12,000  
8,000  
20,000  
200  
Gate Array Equivalent Gates  
PLD Equivalent Gates  
TTL Equivalent Packages  
20-Pin PAL Equivalent Packages  
20  
80  
Logic Modules  
S-Modules  
C-Modules  
547  
0
547  
1,232  
624  
608  
Flip-Flops (Maximum)  
273  
998  
Routing Resources  
Horizontal Tracks/Channel  
Vertical Tracks/Channel  
PLICE Antifuse Elements  
22  
13  
186,000  
35  
15  
750,000  
User I/Os (Maximum)  
69  
140  
Packages (by Pin Count)  
Ceramic Quad Flat Pack (CQFP)  
84  
172  
April 2005  
i
© 2005 Actel Corporation  
See the Actel website for the latest version of the datasheet.  
Radiation-Hardened FPGAs  
Ordering Information  
RH1280 – CQ  
172  
V
Application  
V = QML Qualified  
Package Lead Count  
Package Type  
CQ = Ceramic Quad Flat Pack  
Part Number  
RH1280 = 8000 Gates  
RH1020 = 2000 Gates  
Figure 1-1 Ordering Information  
Ceramic Device Resources  
CQFP 84-Pin  
CQFP 172-Pin  
RH1020  
RH1280  
69  
140  
ii  
v3.1  
Radiation-Hardened FPGAs  
Table of Contents  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Radiation Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
QML Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
RadHard Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
The RH1020 Logic Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
QML Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Radiation Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Timing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9  
Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Sequential Module Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11  
Timing Characteristics  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18  
84-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
172-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
International Traffic in Arms Regulations (ITAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
v3.1  
iii  
Radiation-Hardened FPGAs  
Radiation-Hardened FPGAs  
line by expensive and destructive testing. QML also  
ensures continuous process improvement, a focus on  
enhanced quality and reliability, and shortened product  
introduction and cycle time.  
General Description  
Actel Corporation, the leader in antifuse-based field  
programmable gate arrays (FPGAs), offers fully  
guaranteed RadHard versions of the A1280 and A1020  
devices with gate densities of 8,000 and 2,000 gate array  
gates, respectively.  
Actel Corporation has also achieved QML certification.  
All RH1020 and RH1280 devices will be shipped with a  
"QML" marking, signifying that the devices and  
processes have been reviewed and approved by DESC for  
QML status.  
The RH1020 and RH1280 devices are processed in 0.8 µ,  
two-level metal epitaxial bulk CMOS technology. The  
devices are based on the Actel patented channeled array  
architecture, and employ Actel’s PLICE antifuse  
technology. This architecture offers gate array flexibility,  
high performance, and fast design implementation  
through user programming.  
Development Tool Support  
The RadHard family of FPGAs is fully supported by both  
Actel Libero® Integrated Design Environment (IDE) and  
Designer FPGA development software. Actel Libero IDE is  
Actel devices also provide unique on-chip diagnostic  
probe capabilities, allowing convenient testing and  
debugging. On-chip clock drivers with hard-wired  
distribution networks provide efficient clock distribution  
a
design management environment, seamlessly  
integrating design tools while guiding the user through  
the design flow, managing all design and log files, and  
passing necessary design data among tools. Additionally,  
Libero IDE allows users to integrate both schematic and  
HDL synthesis into a single flow and verify the entire  
design in a single environment. Libero IDE includes  
Synplify® for Actel from Synplicity®, ViewDraw® for  
Actel from Mentor Graphics®, ModelSim® HDL Simulator  
from Mentor Graphics, WaveFormer Lite™ from  
SynaptiCAD™, and Designer software from Actel. Refer  
to the Libero IDE flow diagram for more information  
(located on the Actel website).  
with minimum skew.  
A
security fuse may be  
programmed to disable all further programming, and to  
protect the design from being copied or reverse  
engineered.  
The RH1020 and RH1280 are available as fully qualified  
QML devices. Unlike traditional ASIC devices, the design  
does not have to be finalized six months prior to  
receiving the devices. Customers can make design  
modifications and program new devices within hours.  
These devices are fabricated, assembled, and tested at  
the Lockheed-Martin Space and Electronics facility in  
Manassas, Virginia on an optimized radiation-hardened  
CMOS process.  
Actel Designer software is a place-and-route tool and  
provides a comprehensive suite of backend support tools  
for FPGA development. The Designer software includes  
timing-driven place-and-route, and  
a
world-class  
integrated static timing analyzer and constraints editor.  
With the Designer software, a user can select and lock  
package pins while only minimally impacting the results  
of place-and-route. Additionally, the back-annotation  
flow is compatible with all the major simulators and the  
simulation results can be cross-probed with Silicon  
Explorer II, Actel’s integrated verification and logic  
analysis tool. Another tool included in the Designer  
software is the ACTgen macro builder, which easily  
creates popular and commonly used logic functions for  
implementation in your schematic or HDL design. Actel's  
Designer software is compatible with the most popular  
FPGA design entry and verification tools from companies  
such as Mentor Graphics, Synplicity, Synopsys, and  
Cadence Design Systems. The Designer software is  
available for both the Windows and UNIX operating  
systems.  
Radiation Survivability  
In addition to all electrical limits, all radiation  
characteristics are tested and guaranteed, reducing  
overall system-level risks. With total dose hardness of  
300 krad (Si), latch-up immunity, and a tested single  
event upset (SEU) of less than 1x10–6 errors/bit-day, these  
are the only RadHard, high-density field programmable  
products available today.  
QML Qualification  
Lockheed Martin Space and Electronics in Manassas,  
Virginia has achieved full QML certification, assuring that  
quality management, procedures, processes, and controls  
are in place from wafer fabrication through final test.  
QML qualification means that quality is built into the  
production process rather than verified at the end of the  
v3.1  
1-1  
Radiation-Hardened FPGAs  
where  
Applications  
S0 = A0 × B0  
S1 = A1 + B1  
The RH1020 and RH1280 devices are targeted for use in  
military and space applications subject to radiation  
effects.  
1. Accumulated Total Dose Effects  
A0  
B0  
With the significant increase in Earth-orbiting  
satellite launches and the ever-decreasing time-to-  
launch design cycles, the RH1020 and RH1280 devices  
offer the best combination of total dose radiation  
hardness and quick design implementation necessary  
for this increasingly competitive industry. In addition,  
the high total dose capability allows the use of these  
devices for deep space probes, which encounter other  
planetary bodies where the total dose radiation  
effects are more pronounced.  
S0  
D00  
D01  
D10  
D11  
Y
S1  
A1  
B1  
Figure 1-1 C-Module Implementation  
2. Single Event Effects (SEE)  
The S-module, shown in Figure 1-2 on page 1-3, is  
designed to implement high-speed sequential functions  
within a single logic module. The S-module implements  
the same combinatorial logic function as the C-module  
while adding a sequential element. The sequential  
element can be configured as either a D-flip-flop or a  
transparent latch. To increase flexibility, the S-module  
register can be bypassed so it implements purely  
combinatorial logic.  
Many space applications are more concerned with the  
number of single event upsets and potential for latch-  
up in space. The RH1020 and RH1280 devices are  
latch-up immune, guaranteeing that no latch-up  
failures will occur. Single event upsets can occur in  
these devices as with all semiconductor products, but  
the rate of upset is low, as shown in Table 1-2 on  
page 1-6.  
3. High Dose Rate Survivability  
Flip-flops can also be created using two C-modules. The  
single event upset (SEU) characteristics differ between an  
S-module flip-flop and a flip-flop created using two  
C-modules. For details see the Radiation Specifications  
table on Table 1-2 on page 1-6 and the Design  
Techniques for RadHard Field Programmable Gate Arrays  
application note.  
An additional radiation concern is high dose rate  
survivability. Solar flares and sudden nuclear events  
can cause immediate high levels of radiation. The  
RadHard devices are appropriate for use in these  
types of applications, including missile systems,  
ground-based communication systems, and orbiting  
satellites.  
The RH1020 Logic Module  
The RH1020 logic module is an 8-input, one-output logic  
circuit chosen for the wide range of functions it  
implements and for its efficient use of interconnect  
routing resources (Figure 1-3 on page 1-3).  
RadHard Architecture  
The RH1020 and RH1280 architecture is composed of  
fine-grained building blocks that produce fast and  
efficient logic designs. All the devices are composed of  
logic modules, routing resources, clock networks, and I/O  
modules, which are the building blocks for fast logic  
designs.  
The logic module can implement the four basic logic  
functions (NAND, AND, OR, and NOR) in gates of two,  
three, or four inputs. Each function may have many  
versions, with different combinations of active-low  
inputs. The logic module can also implement a variety of  
D-latches, exclusivity functions, AND-ORs, and OR-ANDs.  
No dedicated hardwired latches or flip-flops are required  
in the array, since latches and flip-flops may be  
constructed from logic modules wherever needed in the  
application.  
Logic Modules  
RH1280 devices contain two types of logic modules,  
combinatorial (C-modules) and sequential (S-modules).  
RH1020 devices contain only C-modules.  
The C-module, shown in Figure 1-1, implements the  
following function:  
Y = !S1 × !S0 × D00 + !S1 × S0 × D01 + S1 × !S0  
× D10 + S1 × S0 × D11  
EQ 1-1  
1-2  
v3.1  
Radiation-Hardened FPGAs  
D00  
D01  
D00  
D01  
OUT  
Y
D
Q
Y
D
Q
OUT  
D10  
D11  
S1  
D10  
D11  
S1  
S0  
S0  
GATE  
CLR  
Up to 7-Input Function Plus D-Type Flip-Flop with Clear  
Up to 7-Input Function Plus Latch  
D00  
D01  
D0  
Y
OUT  
Y
D
Q
OUT  
D10  
S0  
D1  
D11  
S1  
GATE  
CLR  
S
Up to 8-Input Function (same as C-Module)  
Up to 4-Input Function Plus Latch with Clear  
Figure 1-2 S-Module Implementation  
EN  
Q
D
From Array  
To Array  
PAD  
G/CLK*  
Q
D
G/CLK*  
Note: *Can be configured as a Latch or D Flip-Flop (using  
C-Module).  
Figure 1-3 RH1020 Logic Module  
Figure 1-4 I/O Module  
I/O Modules  
I/O modules provide the interface between the device  
pins and the logic array. A variety of user functions,  
determined by a library macro selection, can be  
implemented in the I/O modules (refer to the Antifuse  
Macro Library Guide for more information). I/O modules  
contain a tristate buffer, and input and output latches  
which can be configured for input, output, or  
bidirectional pins (Figure 1-4).  
v3.1  
1-3  
Radiation-Hardened FPGAs  
RadHard devices contain flexible I/O structures in that each  
output pin has a dedicated output enable control. The I/O  
module can be used to latch input and/or output data,  
providing a fast set-up time. In addition, the Actel Designer  
software tools can build a D-flip-flop, using a C-module, to  
register input and/or output signals.  
Antifuse Structures  
An antifuse is a "normally open" structure as opposed to  
the normally closed fuse structure used in PROMs or  
PALs. The use of antifuses to implement a programmable  
logic device results in highly testable structures, as well  
as efficient programming algorithms. The structure is  
highly testable because there are no pre-existing  
connections, enabling temporary connections to be  
made using pass transistors. These temporary  
connections can isolate individual antifuses to be  
programmed, as well as isolate individual circuit  
structures to be tested. This can be done both before and  
after programming. For example, all metal tracks can be  
tested for continuity and shorts between adjacent tracks,  
and the functionality of all logic modules can be verified.  
Actel Designer development tools provide a design  
library of I/O macros that can implement all I/O  
configurations supported by the RadHard FPGAs.  
Routing Structure  
The RadHard device architecture uses vertical and  
horizontal routing tracks to interconnect the various  
logic and I/O modules. These routing tracks are metal  
interconnects that may either be of continuous length or  
broken into segments. Varying segment lengths allow  
over 90 percent of the circuit interconnects to be made  
with only two antifuse connections. Segments can be  
joined together at the ends, using antifuses to increase  
their length up to the full length of the track. All  
interconnects can be accomplished with a maximum of  
four antifuses.  
Logic  
Modules  
Segmented  
Horizontal  
Routing  
Tracks  
Antifuses  
Horizontal Routing  
Horizontal channels are located between the rows of  
modules, and are composed of several routing tracks.  
The horizontal routing tracks within the channel are  
divided into one or more segments. The minimum  
horizontal segment length is the width of a module-pair,  
and the maximum horizontal segment length is the full  
length of the channel. Any segment that spans more  
than one-third the row length is considered a long  
horizontal segment. A typical channel is shown in  
Figure 1-5. Non-dedicated horizontal routing tracks are  
used to route signal nets. Dedicated routing tracks are  
used for the global clock networks and for power and  
ground tie-off tracks.  
Vertical Routing Tracks  
Figure 1-5 Routing Structure  
Related Documents  
Application Notes  
Design Techniques for RadHard Field Programmable  
Gate Arrays  
Vertical Routing  
Another set of routing tracks run vertically through the  
module. There are three types of vertical tracks, input,  
output, and long, that can be divided into one or more  
segments. Each segment in an input track is dedicated to  
the input of a particular module. Each segment in an  
output track is dedicated to the output of a particular  
module. Long segments are uncommitted and can be  
assigned during routing. Each output segment spans  
four channels (two above and two below), except near  
the top and bottom of the array where edge effects  
occur. Long vertical tracks contain either one or two  
segments. An example of vertical routing tracks and  
segments is shown in Figure 1-5.  
http://www.actel.com/documents/Des_Tech_RH_AN.pdf  
Analysis of SDI/DCLK Issue for RH1020 and RT1020  
http://www.actel.com/documents/SDI_DCLK_AN.pdf  
Simultaneously Switching Noise and Signal Integrity  
http://www.actel.com/documents/SSN_AN.pdf  
User’s Guides  
Antifuse Macro Library Guide  
http://www.actel.com/documents/libguide_UG.pdf  
1-4  
v3.1  
Radiation-Hardened FPGAs  
QML Flow  
Test Inspection  
Method  
LMFS Procedure MAN-STC-Q014  
Wafer Lot Acceptance  
Serialization  
Required – 100%  
Die Adhesion Test  
2027 (Stud Pull)  
Bond Pull Test  
2011 (Wirebond)  
Internal Visual  
2010, Condition A  
1010, Condition C, 50 Cycles  
Temperature Cycle  
Constant Acceleration  
Particle Impact Noise Detection (PIND)  
X-Ray Radiography  
2001, Condition D or E, Y1 Orientation Only  
2020, Condition A  
2012  
Pre Burn-In Electrical Parameters (T0)  
Dynamic Burn-In  
Per Device Specification  
1015, 240 Hour Minimum, 125°C  
Per Device Specification  
LMFS Procedure MAN-STC-Q016  
1015, 144 Hour Minimum, 125°C Minimum  
Per Device Specification  
LMFS Procedure MAN-STC-Q016  
1014  
Interim Electrical Parameters (T1)  
Percent Defective Allowable (PDA)  
Static Burn-In  
Final Electrical Parameters (T2)  
Percent Defective Allowable (PDA)  
Seal – Fine/Gross Leak  
External Visual (as required)  
2009  
Absolute Maximum Ratings  
Table 1-1 Free Air Temperature Range  
Symbol  
VCC  
Parameter  
DC Supply Voltage2,3,4,5  
Limits  
–0.5 to +7.0  
–0.5 to VCC +0.5  
–0.5 to VCC +0.5  
20  
Units  
V
VI  
Input Voltage  
V
VO  
Output Voltage  
V
IIO  
I/O Source/Sink Current6  
Storage Temperature2  
mA  
°C  
TSTG  
Notes:  
–65 to +150  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.  
2. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated  
outside the recommended operating conditions.  
3. VPP = VCC , except during device operation.  
4. VSV = VCC , except during device operation.  
5. VKS = GND , except during device operation.  
6. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC  
0.5 V or less than GND – 0.5V, the internal protection diode will be forward-biased and can draw excessive current.  
+
v3.1  
1-5  
Radiation-Hardened FPGAs  
Recommended Operating Conditions  
Parameter  
Military  
–55 to +125  
10  
Units  
°C  
Temperature Range1  
Power Supply Tolerance2  
%VCC  
Notes:  
1. Case temperature (TC) is used.  
2. All power supplies must be in the recommended operating range.  
Electrical Specifications  
Limits  
Group A  
Symbol  
Test Conditions  
(IOH = –4 mA)  
(IOL = 4 mA)  
Subgroups  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Min.  
Max.  
Units  
V
1
VOH  
3.7  
1
VOL  
VIH  
VIL  
0.4  
VCC + 0.3  
0.8  
V
2.2  
V
–0.3  
V
2
Input Transition Time tR, tF  
CIO, I/O Capacitance2  
IIH, IIL  
500  
ns  
pF  
µA  
4
20  
VIN = VCC or GND  
VCC = 5.5 V  
1, 2, 3  
–10  
–10  
10  
I
OZL, IOZH  
VOUT = VCC or GND  
VCC = 5.5 V  
1, 2, 3  
1, 2, 3  
10  
25  
µA  
I
CC Standby3  
mA  
Notes:  
1. Only one output tested at a time. VCC = min.  
2. Not tested, for information only.  
3. All outputs unloaded. All inputs = VCC or GND.  
Radiation Specifications  
Table 1-2 Radiation Specifications1, 2  
Symbol  
RTD  
Characteristics  
Total Dose  
Conditions  
Min.  
Max.  
Units  
300 k  
0
Rad (Si)  
SEL  
Single Event Latch-Up  
–55°C Tcase 125°C  
–55°C Tcase 125°C  
–55°C Tcase 125°C  
–55°C Tcase 125°C  
Fails/Device-Day  
Upsets/Bit-Day  
SEU13  
SEU23  
SEU33  
RNF  
Single Event Upset for S-modules  
Single Event Upset for C-modules  
Single Event Fuse Rupture  
Neutron Fluence  
1E-6  
1E-7  
<1  
Upsets/Bit-Day  
FIT (Fails/Device/1E9 Hrs)  
N/cm2  
>1 E+12  
Notes:  
1. Measured at room temperature unless otherwise stated.  
2. Device electrical characteristics are guaranteed for post-irradiation levels at worst-case conditions.  
3. 10% worst-case particle environment, geosynchronous orbit, 0.025" of aluminum shielding. Specification set using the CREME  
code upset rate calculation method with a 2 µ epi thickness.  
1-6  
v3.1  
Radiation-Hardened FPGAs  
Package Thermal Characteristics  
The device junction to case thermal characteristics is θjc,  
and the junction to ambient air characteristics is θja. The  
thermal characteristics for θja are listed with  
two different air flow rates, as shown in Table 1-3.  
Maximum junction temperature is 150°C.  
A sample calculation of the maximum power dissipation  
for an 84-pin ceramic quad flat pack at commercial  
temperature is shown in EQ 1-2.  
Max. Junction Temperature C) Max. Commercial Temperature C)  
150°C 70°C  
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
------------------------------------  
=
= 2.0 W  
θja(°C/W)  
40°C/W  
EQ 1-2  
Table 1-3 Thermal Characteristics  
θja  
1.0 m/s  
2.5 m/s  
Package Type  
Pin Count  
θjc  
2.0  
2.0  
Still Air  
40.0  
200 ft. / min. 500 ft. / min.  
Units  
Ceramic Quad Flat Pack  
Ceramic Quad Flat Pack  
84  
33.0  
23.1  
30.0  
21.0  
°C/W  
°C/W  
172  
28.0  
Note: θjc for CQFP packages refers to the thermal resistance between the junction and the bottom of the package.  
greater reduction in board-level power dissipation can  
be achieved.  
Power Dissipation  
The power due to standby current is typically a small  
component of the overall power. Standby power is  
calculated below for military, worst case conditions.  
General Power Equation  
P = [ICCstandby + ICCactive] × VCC + IOL × VOL  
N + IOH × (VCC – VOH) × M  
×
ICC  
VCC  
Power  
25 mA 5.5 V 138 mW (max)  
1 mA 5.5 V 5.5 mW (typ)  
EQ 1-3  
where  
CCstandby is the current flowing when no inputs or  
outputs are changing.  
CCactive is the current flowing due to CMOS  
switching.  
OL, IOH are TTL sink/source currents.  
OL, VOH are TTL level output voltages.  
N equals the number of outputs driving TTL loads to  
VOL  
M equals the number of outputs driving TTL loads to  
VOH  
I
Active Power Components  
I
Power dissipation in CMOS devices is usually dominated  
by the active (dynamic) power dissipation. This  
component is frequency-dependent and a function of  
the logic and the external I/O. Active power dissipation  
results from charging internal chip capacitances of the  
interconnect, unprogrammed antifuses, module inputs,  
and module outputs, plus external capacitance due to PC  
board traces and load device inputs. An additional  
component of the active power dissipation is the  
totempole current in CMOS transistor pairs. The net  
effect can be associated with an equivalent capacitance  
that can be combined with frequency and voltage to  
represent active power dissipation.  
I
V
.
.
Accurate values for N and M are difficult to determine  
because they depend on the family type, design details,  
and on the system I/O. The power can be divided into  
two components: static and active.  
The power dissipated by a CMOS circuit can be expressed  
by EQ 1-4:  
Static Power Components  
Actel FPGAs have small static power components that  
result in lower power dissipation than PALs or PLDs. By  
integrating multiple PALs/PLDs into one FPGA, an even  
2
Power (uW) = CEQ × VCC × F  
EQ 1-4  
v3.1  
1-7  
Radiation-Hardened FPGAs  
where  
CEQCR = Equivalent capacitance of routed array clock  
in pF  
CEQ  
VCC  
F
= Equivalent capacitance in pF  
= Power supply in volts (V)  
= Switching frequency in MHz  
CL  
fm  
fn  
fp  
fq1  
fq2  
= Output lead capacitance in pF  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
Equivalent Capacitance  
Equivalent capacitance is calculated by measuring ICC  
active at a specified frequency and voltage for each  
circuit component of interest. Measurements have been  
= Average second routed array clock rate in  
MHz (RH1280 only)  
made over a range of frequencies at a fixed value of VCC  
.
Fixed Capacitance Values for Actel FPGAs  
(pF)  
Equivalent capacitance is frequency-independent so the  
results may be used over a wide range of operating  
conditions. Equivalent capacitance values follow.  
r1  
r2  
Device Type  
routed_Clk1  
routed_Clk2  
C
Values for Actel FPGAs  
EQ  
RH1020  
RH1280  
69  
168  
N/A  
168  
RH1020 RH1280  
5.2  
11.6  
23.8  
3.5  
Modules (CEQM  
Input Buffers (CEQI  
Output Buffers (CEQO  
Routed Array Clock Buffer Loads (CEQCR  
)
3.7  
22.1  
31.2  
4.6  
Determining Average Switching  
Frequency  
To determine the switching frequency for a design, you  
must have a detailed understanding of the data input  
values to the circuit. The following guidelines are meant  
to represent worst-case scenarios, so they can be  
generally used to predict the upper limits of power  
dissipation. These guidelines are as follow:  
)
)
)
To calculate the active power dissipated from the  
complete design, the switching frequency of each part of  
the logic must be known. EQ 1-5 shows a piece-wise  
linear summation over all components.  
Logic Modules (m)  
Inputs Switching (n)  
Outputs Switching (p)  
= 80% of Modules  
= # Inputs/4  
2
Power = VCC × [(m × CEQM × fm)modules + (n × CEQI  
× fn)inputs + (p × (CEQO+ CL) × fp)outputs + 0.5 ×  
= # Outputs/4  
(q1  
×
CEQCR × fq1  
)
+ (r1 × fq1  
×
)
+ 0.5  
routed_Clk1  
routed_Clk1  
First Routed Array Clock Loads = 40% of  
(q1) Sequential  
Modules  
(q2 × CEQCR × fq2  
)
+ (r2 ×  
routed_Clk2  
fq2  
)
]
routed_Clk2  
Second Routed Array Clock Loads = 40% of  
EQ 1-5  
(q2) (RH1280 only)  
Sequential  
Modules  
where  
m
n
p
= Number of logic modules switching at fm  
= Number of input buffers switching at fn  
= Number of output buffers switching at fp  
Load Capacitance (CL)  
= 35 pF  
Average Logic Module Switching = F/10  
Rate (fm)  
q1  
= Number of clock loads on the first routed  
array clock  
= Number of clock loads on the second routed  
array clock (RH1280 only)  
= Fixed capacitance due to first routed array  
clock  
= Fixed capacitance due to second routed array  
clock (RH1280 only)  
Average Input Switching Rate = F/5  
(fn)  
q2  
r1  
r2  
Average Output Switching Rate = F/10  
(fp)  
Average First Routed Array Clock = F  
Rate (fq1  
)
Average Second Routed Array = F/2  
Clock Rate (fq2) (RH1280 only)  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
1-8  
v3.1  
Radiation-Hardened FPGAs  
Timing Models  
Predicted  
Routing  
Delays  
Input Delay  
Internal Delays  
Logic Module  
Output Delay  
I/O Module  
I/O Module  
t
IRD2 = 1.9 ns  
t
INYL = 4.2 ns  
t
t
DLH = 9.1 ns  
t
IRD1 = 1.2 ns  
RD1 = 1.2 ns  
t
t
t
t
t
IRD4 = 4.2 ns  
PD = 3.9 ns  
RD2 = 1.9 ns  
ENHZ = 13.5 ns  
t
t
IRD8 = 8.9 ns  
CO = 3.9 ns  
RD4 = 4.2 ns  
t
RD8 = 8.9 ns  
ARRAY  
CLOCK  
t
FO = 128  
CKH = 7.6 ns  
F
MAX = 55 MHz  
Figure 1-6 RH1020 Timing Model  
Input Delays  
I/O Module  
Output Delays  
Internal Delays  
Combinatorial  
Logic Module  
I/O Module  
Predicted  
Routing  
Delays  
t
= 2.3 ns  
= 7.5 ns  
t
INYL  
IRD2  
t
DLH = 8.7 ns  
t
t
t
t
RD1 = 2.7 ns  
RH2 = 3.4 ns  
RD4 = 4.8 ns  
RD8 = 9.0 ns  
D
G
Q
t
= 4.7 ns  
PD  
I/O Module  
t
DLH = 8.7 ns  
Sequential  
t
t
t
INH = 0.0 ns  
INSU = 0.6 ns  
INGL = 5.3 ns  
Logic Module  
Combin-  
atorial  
Logic  
D
Q
D
G
Q
t
t
RD1 = 2.7 ns  
ENHZ = 9.7 ns  
included  
in t  
SUD  
t
t
t
OUTH = 0.0 ns  
OUTSU = 0.6 ns  
GLH = 7.6 ns  
t
t
= 0.7 ns  
= 0.0 ns  
t
= 4.7 ns  
SUD  
HD  
CO  
ARRAY  
CLOCKS  
FO = 384  
t
CKH = 11.2 ns  
F
t
MAX = 95 MHz  
LCO = 17.7 ns (64 loads, pad-pad)  
Note: † Input module predicted routing delay.  
Figure 1-7 RH1280 Timing Model  
v3.1  
1-9  
Radiation-Hardened FPGAs  
Parameter Measurement  
Output Buffer Delays  
E
D
PAD To AC Test Loads (shown below)  
TRIBUFF  
E
In  
50% 50%  
VOH  
E
50% 50%  
50% 50%  
V
VOH  
1.5V  
1.5V  
1.5V  
90%  
PAD  
PAD  
PAD  
GND  
1.5V  
10%  
V
V
OL  
OL  
t
t
t
t
t
t
DLH  
DHL  
ENZL  
ENLZ  
ENZH  
ENHZ  
Figure 1-8 Output Buffer Delays  
AC Test Loads  
Load 1  
Load 2  
(Used to Measure Propagation Delay)  
(Used to Measure Rising/Falling Edges)  
VCC  
GND  
To the Output Under Test  
t
t
R to VCC for PLZ / PZL  
35 pF  
t
t
R to GND for PHZ / PZH  
R = 1 k  
Ω
To the Output Under Test  
35 pF  
Figure 1-9 AC Test Loads  
Input Buffer Delays  
S
A
B
Y
Y
PA D  
INBUF  
S, A or B 50% 50%  
Y
50%  
50%  
3V  
t
t
PLH  
PHL  
PAD  
0V  
1.5V 1.5V  
VCC  
Y
50%  
50%  
50%  
Y
50%  
t
t
PHL  
PLH  
GND  
t
t
INYL  
INYH  
Figure 1-11 Module Delays  
Figure 1-10 Input Buffer Delays  
Module Delays  
1-10  
v3.1  
Radiation-Hardened FPGAs  
Sequential Module Timing Characteristics  
Flip-Flops and Latches  
D
E
CLK  
PRE  
CLR  
Y
(Positive Edge Triggered)  
t
HD  
1
D
t
t
t
A
SUD  
WC LKA  
G, C LK  
t
WCLKI  
t
SUENA  
t
HENA  
E
t
CO  
Q
t
RS  
PRE, CLR  
t
WASYN  
Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.  
Figure 1-12 Flip-Flops and Latches  
PA D  
G
DATA  
IBDL  
CLK  
PA D  
CLKBUF  
DATA  
G
t
INH  
t
INSU  
t
H EXT  
CLK  
t
SU EXT  
Figure 1-13 Input Buffer Latches  
v3.1  
1-11  
Radiation-Hardened FPGAs  
D
G
PAD  
OBDLHS  
D
G
t
OUTSU  
t
OUTH  
Figure 1-14 Output Buffer Latches  
1-12  
v3.1  
Radiation-Hardened FPGAs  
Timing Characteristics  
Table 1-4 RH1020 Timing Characteristics  
(Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C, RTD = 300 krad (Si))  
Description  
Logic Module Propagation Delays  
Parameter  
Min.  
Max.  
Units  
tPD1  
tPD2  
tCO  
tGO  
tRS  
Single Module  
3.9  
9.2  
3.9  
3.9  
3.9  
ns  
ns  
ns  
ns  
ns  
Dual Module Macros  
Sequential Clk to Q  
Latch G to Q  
Flip-Flop (Latch) Reset to Q  
Logic Module Predicted Routing Delays1  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.2  
1.9  
2.8  
4.2  
8.9  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing 2  
tSUD  
Flip-Flop (Latch) Data Input Set-Up  
7.5  
0.0  
7.5  
0.0  
9.2  
9.2  
19.2  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
tA  
ns  
Flip-Flop (Latch) Enable Hold  
ns  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
Flip-Flop Clock Input Period  
ns  
ns  
ns  
fMAX  
Flip-Flop (Latch) Clock Frequency  
50  
MHz  
Input Module Propagation Delays  
tINYH  
Pad to Y High  
4.2  
4.2  
ns  
ns  
tINYL  
Pad to Y Low  
Input Module Predicted Routing Delays1, 3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.2  
1.9  
2.8  
4.2  
8.9  
ns  
ns  
ns  
ns  
ns  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the DirectTime Analyzer utility.  
3. Optimization techniques may further reduce delays by 0 to 4 ns.  
4. The hold time for the DFME1A macro may be greater than 0 ns. Use the Designer v3.0 (or later) Timer to check the hold time for  
this macro.  
v3.1  
1-13  
Radiation-Hardened FPGAs  
Table 1-5 RH1020 Timing Characteristics  
(Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C, RTD = 300 krad (Si))  
Description  
Global Clock Network  
Parameter  
Min.  
Max.  
Units  
tCKH  
tCKL  
tPWH  
tPWL  
tCKSW  
tP  
Input Low to High  
FO = 16  
FO = 128  
6.6  
7.6  
ns  
ns  
Input High to Low  
FO = 16  
FO = 128  
8.7  
9.5  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
FO = 16  
FO = 128  
8.8  
9.2  
ns  
FO = 16  
FO = 128  
1.6  
2.4  
ns  
FO = 16  
FO = 128  
1.6  
2.5  
ns  
Minimum Period  
FO = 16  
FO = 128  
17.9  
19.2  
ns  
fMAX  
Maximum Frequency  
FO = 16  
FO = 128  
55  
50  
MHz  
TTL Output Module Timing1  
tDLH  
Data to Pad High  
9.1  
10.2  
8.9  
ns  
ns  
tDHL  
Data to Pad Low  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
dTHL  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
Delta Low to High  
Delta High to Low  
ns  
10.7  
13.5  
12.2  
0.08  
0.11  
ns  
ns  
ns  
ns/pF  
ns/pF  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
10.7  
8.7  
ns  
ns  
tDHL  
Data to Pad Low  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
Delta Low to High  
Delta High to Low  
8.1  
ns  
11.2  
13.5  
12.2  
0.14  
0.08  
ns  
ns  
ns  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Delays based on 35 pF loading.  
2. SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.  
1-14  
v3.1  
Radiation-Hardened FPGAs  
Table 1-6 RH1280 Timing Characteristics  
(Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C, RTD = 300 krad (Si))  
Parameter  
Description  
Min.  
Max.  
Units  
Logic Module Propagation Delays1  
tPD1  
tCO  
tGO  
tRS  
Single Module  
4.7  
4.7  
4.7  
4.7  
ns  
ns  
ns  
ns  
Sequential Clk to Q  
Latch G to Q  
Flip-Flop (Latch) Reset to Q  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.7  
3.4  
4.1  
4.8  
9.0  
ns  
ns  
ns  
ns  
ns  
Sequential Timing Characteristics3, 4  
tSUD  
Flip-Flop (Latch) Data Input Set-Up  
0.7  
0.0  
1.4  
0.0  
6.6  
6.6  
13.5  
0.0  
0.6  
0.0  
0.6  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
Flip-Flop Clock Input Period  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
tA  
ns  
ns  
ns  
ns  
ns  
tINH  
Input Buffer Latch Hold  
ns  
tINSU  
Input Buffer Latch Set-Up  
ns  
tOUTH  
tOUTSU  
fMAX  
Notes:  
Output Buffer Latch Hold  
ns  
Output Buffer Latch Set-Up  
ns  
Flip-Flop (Latch) Clock Frequency  
95  
MHz  
1. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the DirectTime Analyzer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal set-up (hold) time.  
v3.1  
1-15  
Radiation-Hardened FPGAs  
Table 1-7 RH1280 Timing Characteristics  
(Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C, RTD = 300 krad (Si))  
Description  
Input Module Propagation Delays  
Parameter  
Min.  
Max.  
Units  
tINYH  
tINYL  
tINGH  
tINGL  
Pad to Y High  
Pad to Y Low  
G to Y High  
G to Y Low  
1.9  
2.3  
4.1  
5.3  
ns  
ns  
ns  
ns  
Input Module Predicted Routing Delays*  
tIRD1  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
6.8  
7.5  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
8.2  
tIRD4  
8.9  
tIRD8  
11.7  
Global Clock Network  
tCKH  
Input Low to High  
FO = 32  
FO = 384  
9.6  
11.2  
ns  
ns  
tCKL  
Input High to Low  
FO = 32  
9.6  
FO = 384  
11.2  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
FO = 32  
FO = 384  
5.8  
6.2  
ns  
FO = 32  
FO = 384  
5.8  
6.2  
ns  
FO = 32  
FO = 384  
1.1  
1.1  
ns  
Input Latch External Set-Up  
Input Latch External Hold  
Minimum Period  
FO = 32  
FO = 384  
0.0  
0.0  
ns  
FO = 32  
FO = 384  
4.6  
5.8  
ns  
FO = 32  
FO = 384  
11.8  
13.0  
ns  
fMAX  
Maximum Frequency  
FO = 32  
FO = 384  
105  
95  
MHz  
Note: *Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may  
further reduce delays by 0 to 4 ns.  
1-16  
v3.1  
Radiation-Hardened FPGAs  
Table 1-8 RH1280 Timing Characteristics  
(Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C, RTD = 300 krad (Si))  
Parameter  
Description Min.  
Max.  
Units  
TTL Output Module Timing1  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLCO  
tACO  
dTLH  
dTHL  
Data to Pad High  
6.8  
7.6  
ns  
ns  
Data to Pad Low  
Enable Pad Z to High  
6.8  
ns  
Enable Pad Z to Low  
7.6  
ns  
Enable Pad High to Z  
9.7  
ns  
Enable Pad Low to Z  
9.7  
ns  
G to Pad High  
7.6  
ns  
G to Pad Low  
8.9  
ns  
I/O Latch Clock-Out (Pad-to-Pad), 64 Clock Loading  
Array Clock-Out (Pad-to-Pad), 64 Clock Loading  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
17.7  
25.0  
0.07  
0.09  
ns  
ns  
ns/pF  
ns/pF  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
8.7  
6.4  
ns  
ns  
tDHL  
Data to Pad Low  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
Enable Pad Z to High  
6.8  
ns  
Enable Pad Z to Low  
7.6  
ns  
Enable Pad High to Z  
9.7  
ns  
Enable Pad Low to Z  
9.7  
ns  
G to Pad High  
7.6  
ns  
tGHL  
G to Pad Low  
8.9  
ns  
tLCO  
I/O Latch Clock-Out (Pad-to-Pad), 64 Clock Loading  
Array Clock-Out (Pad-to-Pad), 64 Clock Loading  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
20.1  
29.5  
0.09  
0.08  
ns  
tACO  
dTLH  
dTHL  
Notes:  
ns  
ns/pF  
ns/pF  
1. Delays based on 35 pF loading.  
2. SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.  
v3.1  
1-17  
Radiation-Hardened FPGAs  
Pin Description  
CLKA  
Clock A (Input)  
NC  
No Connection  
TTL clock input for clock distribution networks. The clock  
input is buffered prior to clocking the logic modules. This  
pin can also be used as an I/O.  
This pin is not connected to circuitry within the device.  
PRA, I/O  
Probe A (Output)  
The Probe A pin is used to output data from any user-  
defined design node within the device. This independent  
diagnostic pin can be used in conjunction with the Probe  
B pin to allow real-time diagnostic output of any signal  
path within the device. The Probe A pin can be used as a  
user-defined I/O when verification has been completed.  
The pin’s probe capabilities can be permanently disabled  
to protect programmed design confidentiality. PRA is  
accessible when the MODE pin is HIGH. This pin functions  
as an I/O when the MODE pin is LOW.  
CLKB  
Clock B (Input)  
Not applicable for RH1020. TTL clock input for clock  
distribution networks. The clock input is buffered prior  
to clocking the logic modules. This pin can also be used  
as an I/O.  
1
DCLK  
Diagnostic Clock (Input)  
TTL clock input for diagnostic probe and device  
programming. DCLK is active when the MODE pin is  
HIGH. This pin functions as an I/O when the MODE pin is  
LOW. If the Program fuse is not programmed and DCLK is  
undefined, it is configured as an inactive input. In this  
case, tie the DCLK pin to ground. If the Program fuse is  
programmed and DCLK is undefined, it will become an  
active LOW output.The Program fuse must be  
programmed if the DCLK pin is used as an output or a  
bidirectional pin.  
PRB, I/O  
Probe B (Output)  
The Probe B pin is used to output data from any user-  
defined design node within the device. This independent  
diagnostic pin can be used in conjunction with the Probe  
A pin to allow real-time diagnostic output of any signal  
path within the device. The Probe B pin can be used as a  
user-defined I/O when verification has been completed.  
The pin’s probe capabilities can be permanently disabled  
to protect programmed design confidentiality. PRB is  
accessible when the MODE pin is HIGH. This pin functions  
as an I/O when the MODE pin is LOW.  
GND  
Ground  
LOW supply voltage.  
I/O  
Input/Output (Input, Output)  
1
SDI  
Serial Data Input (Input)  
The I/O pin functions as an input, output, three-state, or  
bidirectional buffer. Input and output levels are  
compatible with standard TTL and CMOS specifications.  
Unused I/O pins are automatically driven LOW by the  
Designer software.  
Serial data input for diagnostic probe and device  
programming. SDI is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
If the Program fuse is not programmed and SDI is  
undefined, it is configured as an inactive input. In this  
case, tie the SDI pin to ground. If the Program fuse is  
programmed and SDI is undefined, it will become an  
active LOW output.The Program fuse must be  
programmed if the SDI pin is used as an output or a  
bidirectional pin.  
MODE  
Mode (Input)  
The MODE pin controls the use of multi-function pins  
(DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the  
special functions are active. When the MODE pin is LOW,  
the pins function as I/Os. To provide debugging  
capability, the MODE pin should be terminated to GND  
through a 10 kΩ resistor so that the MODE pin can be  
pulled HIGH when required.  
V
5.0V Supply Voltage  
CC  
HIGH supply voltage.  
1. Please refer to the Actel Technical Brief Analysis of SDI/DCLK Issue for RH1020 and RT1020.  
1-18  
v3.1  
Radiation-Hardened FPGAs  
Package Pin Assignments  
84-Pin CQFP  
Pin #1  
Index  
84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
84-Pin  
CQFP  
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42  
Figure 2-1 84-Pin CQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit the Package Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v3.1  
2-1  
Radiation-Hardened FPGAs  
84-Pin CQFP  
84-Pin CQFP  
84-Pin CQFP  
Pin  
RH1020  
Pin  
RH1020  
Pin  
RH1020  
Number  
Function  
Number  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Function  
Number  
Function  
1
NC  
I/O  
I/O  
I/O  
71  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
72  
3
I/O  
I/O  
73  
4
I/O  
I/O  
74  
5
I/O  
I/O  
75  
6
I/O  
I/O  
76  
7
GND  
GND  
I/O  
I/O  
77  
8
I/O  
78  
9
I/O  
79  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
80  
I/O  
I/O  
81  
I/O  
I/O  
82  
I/O  
I/O  
83  
VCC  
VCC  
I/O  
GND  
GND  
I/O  
84  
I/O  
I/O  
I/O  
CLKA, I/O  
I/O  
I/O  
I/O  
MODE  
VCC  
VCC  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SDI, I/O  
DCLK, I/O  
PRA, I/O  
PRB, I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
2-2  
v3.1  
Radiation-Hardened FPGAs  
172-Pin CQFP  
172 171 170 169 168 167 166 165 164  
137 136 135 134 133 132 131 130  
Pin #1  
Index  
1
2
3
4
5
6
7
8
129  
128  
127  
126  
125  
124  
123  
122  
172-Pin  
CQFP  
35  
36  
37  
38  
39  
40  
41  
42  
43  
95  
94  
93  
92  
91  
90  
89  
88  
87  
44 45 46 47 48 49 50 51 52  
79 80 81 82 83 84 85 86  
Figure 2-2 172-Pin CQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit the Package Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v3.1  
2-3  
Radiation-Hardened FPGAs  
172-Pin CQFP  
172-Pin CQFP  
RH1280A  
172-Pin CQFP  
RH1280A  
172-Pin CQFP  
RH1280A  
RH1280A  
Pin Number Function  
Pin Number Function  
Pin Number Function  
Pin Number Function  
1
MODE  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
I/O  
I/O  
I/O  
I/O  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
GND  
VCC  
GND  
VCC  
VCC  
I/O  
2
3
I/O  
4
I/O  
5
I/O  
6
I/O  
7
GND  
I/O  
I/O  
8
VCC  
I/O  
9
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SDI, I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-4  
v3.1  
Radiation-Hardened FPGAs  
172-Pin CQFP  
RH1280A  
Pin Number Function  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRA, I/O  
I/O  
CLKA, I/O  
VCC  
GND  
I/O  
CLKB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
DCLK, I/O  
I/O  
v3.1  
2-5  
Radiation-Hardened FPGAs  
Datasheet Information  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous Version Changes in Current Version (v3.1)  
Page  
1-1  
v3.0  
"Development Tool Support" section was updated.  
Table 1-1 was updated.  
1-5  
Table 1-2 was updated.  
1-6  
Table 1-3 was updated.  
1-7  
The "DCLK Diagnostic Clock (Input)" section was updated.  
The "SDI1 Serial Data Input (Input)" section was updated.  
1-18  
1-18  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general product  
information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the general family  
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and  
for specifications that do not differ between the two families.  
International Traffic in Arms Regulations (ITAR)  
The product described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR). They  
require an approved export license prior to export from the United States. An export includes release of product or  
disclosure of technology to a foreign national inside or outside the United States.  
v3.1  
3-1  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
www.jp.actel.com  
Actel Hong Kong  
www.actel.com.cn  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Suite 2114, Two Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +44 (0) 1276 401 450  
Fax +44 (0) 1276 401 490  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
5172123-3/4.05  

相关型号:

RH1020-CQ84VX79

Field Programmable Gate Array, 547 CLBs, 2000 Gates, 50MHz, CMOS, CQFP84, CERAMIC, QFP-84
ACTEL

RH1020-CQG84V

Field Programmable Gate Array, 547 CLBs, 3000 Gates, 55MHz, CMOS, CQFP84, CERAMIC, QFP-84
ACTEL

RH1020000JS03

RESISTOR, WIRE WOUND, 6 W, 5 %, 15 ppm, 2000 ohm, CHASSIS MOUNT, ROHS COMPLIANT
VISHAY

RH10200R0JS03

RESISTOR, WIRE WOUND, 6 W, 5 %, 15 ppm, 200 ohm, CHASSIS MOUNT, ROHS COMPLIANT
VISHAY

RH1020K00JS03

RESISTOR, WIRE WOUND, 6 W, 5 %, 15 ppm, 20000 ohm, CHASSIS MOUNT, ROHS COMPLIANT
VISHAY

RH1021-10

Precision 10V Reference
Linear

RH1021-5

Precision 5V Reference
Linear

RH1021-7

Precision 7V Reference
Linear

RH1021BM-10

Precision 10V Reference
Linear

RH1021BM-10H

Voltage Reference
ETC

RH1021BM-5

Precision 5V Reference
Linear

RH1021BM-5H

Voltage Reference
ETC