AD8137YRZ-REEL7 [AAVID]

Low Cost, Low Power, Differential ADC Driver; 低成本,低功耗差分ADC驱动器
AD8137YRZ-REEL7
型号: AD8137YRZ-REEL7
厂家: AAVID THERMALLOY, LLC    AAVID THERMALLOY, LLC
描述:

Low Cost, Low Power, Differential ADC Driver
低成本,低功耗差分ADC驱动器

驱动器
文件: 总32页 (文件大小:588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Low Power,  
Differential ADC Driver  
AD8137  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Fully differential  
AD8137  
–IN  
1
2
8
7
6
5
+IN  
PD  
Extremely low power with power-down feature  
2.6 mA quiescent supply current @ 5 V  
450 µA in power-down mode @ 5 V  
High speed  
V
OCM  
V
V
3
4
S–  
S+  
+OUT  
–OUT  
110 MHz large signal 3 dB bandwidth @ G = 1  
450 V/µs slew rate  
Figure 1.  
12-bit SFDR performance @ 500 kHz  
Fast settling time: 100 ns to 0.02%  
Low input offset voltage: 2.6 mV max  
Low input offset current: 0.45 µA max  
Differential input and output  
Differential-to-differential or single-ended-to-differential  
operation  
Rail-to-rail output  
Adjustable output common-mode voltage  
Externally adjustable gain  
Wide supply voltage range: 2.7 V to 12 V  
Available in small SOIC package  
Qualified for automotive applications  
3
2
G = 1  
1
0
–1  
G = 2  
G = 5  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
G = 10  
–10  
–11  
–12  
R
V
= 1k  
O, dm  
G
= 0.1V p-p  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
APPLICATIONS  
ADC drivers  
Figure 2. Small Signal Response for Various Gains  
Automotive vision and safety systems  
Automotive infotainment systems  
Portable instrumentation  
Battery-powered applications  
Single-ended-to-differential converters  
Differential active filters  
Video amplifiers  
Level shifters  
GENERAL DESCRIPTON  
The AD8137 is a low cost differential driver with a rail-to-rail  
output that is ideal for driving ADCs in systems that are sensitive  
to power and cost. The AD8137 is easy to apply, and its internal  
common-mode feedback architecture allows its output common-  
mode voltage to be controlled by the voltage applied to one pin.  
The internal feedback loop also provides inherently balanced  
outputs as well as suppression of even-order harmonic distortion  
products. Fully differential and single-ended-to-differential gain  
configurations are easily realized by the AD8137. External  
closed-loop gain of the amplifier. The power-down feature is  
beneficial in critical low power applications.  
The AD8137 is manufactured on Analog Devices, Inc.,  
proprietary second-generation XFCB process, enabling it to  
achieve high levels of performance with very low power  
consumption.  
The AD8137 is available in the small 8-lead SOIC package and  
3 mm × 3 mm LFCSP package. It is rated to operate over the  
extended industrial temperature range of −40°C to +125°C.  
feedback networks consisting of four resistors determine the  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2004–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8137  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 21  
Theory of Operation ...................................................................... 22  
Applications Information.............................................................. 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Descripton .......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
Maximum Power Dissipation ..................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Analyzing a Typical Application with Matched RF and RG  
Networks...................................................................................... 23  
Estimating Noise, Gain, and Bandwith with Matched  
Feedback Networks.................................................................... 23  
Driving an ADC with Greater than 12-Bit Performance...... 27  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 30  
Automotive Products................................................................. 30  
REVISION HISTORY  
7/12—Rev. D to Rev. E  
8/04—Rev. 0 to Rev. A.  
Changes to Features Section and Applications Section............... 1  
Added AD8137W...............................................................Universal  
Updated Outline Dimensions ....................................................... 28  
Changes to Ordering Guide .......................................................... 29  
Added Automotive Products Section .......................................... 29  
Added 8-Lead LFCSP.........................................................Universal  
Changes to Layout..............................................................Universal  
Changes to Product Title and Figure 1...........................................1  
Changes to Specifications.................................................................3  
Changes to Absolute Maximum Ratings........................................6  
Changes to Figure 4 and Figure 5....................................................7  
Added Figure 6, Figure 20, Figure 23, Figure 35, Figure 48,  
and Figure 58; Renumbered Sequentially ......................................7  
Changes to Figure 32...................................................................... 12  
Changes to Figure 40...................................................................... 13  
Changes to Figure 55...................................................................... 16  
Changes to Table 7 and Figure 63................................................. 18  
Changes to Equation 19................................................................. 19  
Changes to Figure 64 and Figure 65............................................. 20  
Changes to Figure 66...................................................................... 22  
Added Driving an ADC with Greater Than 12-Bit  
7/10—Rev. C to Rev. D  
Changes to Power-Down Section, Added Figure 68,  
Renumbered Subsequent Figures................................................. 24  
Changes to Ordering Guide .......................................................... 27  
12/09—Rev. B to Rev. C  
Changes to Product Title, Applications Section, and General  
Description Section.......................................................................... 1  
Changes to Input Resistance Parameter Unit, Table 3................. 5  
Added EPAD Mnemonic/Description, Table 6 ............................ 7  
Added Figure 61; Renumbered Sequentially .............................. 17  
Moved Test Circuits Section.......................................................... 18  
Changes to Power Down Section ................................................. 24  
Updated Outline Dimensions ....................................................... 26  
Performance Section...................................................................... 22  
Changes to Ordering Guide.......................................................... 24  
Updated Outline Dimensions....................................................... 24  
5/04—Revision 0: Initial Version  
7/05—Rev. A to Rev. B  
Changes to Ordering Guide .......................................................... 24  
Rev. E | Page 2 of 32  
 
Data Sheet  
AD8137  
SPECIFICATIONS  
VS = 5 V, VOCM = 0 V (@ 25°C, differential gain = 1, RL, dm = RF = RG = 1 kΩ, unless otherwise noted, TMIN to TMAX = −40°C to +125°C).  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL INPUT PERFORMANCE  
Dynamic Performance  
−3 dB Small Signal Bandwidth  
−3 dB Large Signal Bandwidth  
VO, dm = 0.1 V p-p  
AD8137W only: TMIN-TMAX  
VO, dm = 2 V p-p  
AD8137W only: TMIN-TMAX  
VO, dm = 2 V step  
VO, dm = 3.5 V step  
64  
63  
79  
79  
76  
MHz  
MHz  
MHz  
MHz  
V/µs  
Ns  
110  
Slew Rate  
450  
100  
85  
Settling Time to 0.02%  
Overdrive Recovery Time  
Noise/Harmonic Performance  
G = 2, VI, dm = 12 V p-p triangle wave  
Ns  
SFDR  
VO, dm = 2 V p-p, fC = 500 kHz  
VO, dm = 2 V p-p, fC = 2 MHz  
f = 50 kHz to 1 MHz  
90  
76  
8.25  
1
dB  
dB  
nV/√Hz  
pA/√Hz  
Input Voltage Noise  
Input Current Noise  
DC Performance  
f = 50 kHz to 1 MHz  
Input Offset Voltage  
VIP = VIN = VOCM = 0 V  
AD8137W only: TMIN-TMAX  
TMIN to TMAX  
−2.6  
−5.0  
0.7  
+2.6  
+5.0  
mV  
mV  
µV/°C  
µA  
µA  
µA  
Input Offset Voltage Drift  
Input Bias Current  
Input Offset Current  
3
TMIN to TMAX  
0.5  
0.1  
1.0  
0.45  
0.45  
AD8137W only: TMIN-TMAX  
Open-Loop Gain  
91  
dB  
Input Characteristics  
Input Common-Mode Voltage Range  
−4  
−4  
+4  
+4  
V
V
AD8137W only: TMIN-TMAX  
Differential  
Common-mode  
Common-mode  
ΔVICM = 1 V  
Input Resistance  
800  
400  
1.8  
79  
KΩ  
KΩ  
pF  
dB  
dB  
Input Capacitance  
CMRR  
66  
66  
AD8137W only: TMIN-TMAX  
Output Characteristics  
Output Voltage Swing  
Each single-ended output, RL, dm = 1 kΩ  
AD8137W only: TMIN-TMAX  
VS− + 0.55  
VS− + 0.55  
VS+ − 0.55  
VS+ − 0.55  
V
V
Output Current  
Output Balance Error  
VOCM to VO, cm PERFORMANCE  
VOCM Dynamic Performance  
−3 dB Bandwidth  
Slew Rate  
20  
−64  
mA  
dB  
f = 1 MHz  
VO, cm = 0.1 V p-p  
VO, cm = 0.5 V p-p  
58  
63  
1.000  
MHz  
V/µs  
V/V  
Gain  
0.992  
0.990  
1.008  
1.008  
AD8137W only: TMIN-TMAX  
AD8137W only: TMIN-TMAX  
V/V  
VOCM Input Characteristics  
Input Voltage Range  
−4  
−4  
+4  
+4  
V
V
Input Resistance  
Input Offset Voltage  
35  
11  
kΩ  
mV  
mV  
nV/√Hz  
−28  
−28  
+28  
+28  
AD8137W only: TMIN-TMAX  
f = 100 kHz to 1 MHz  
Input Voltage Noise  
18  
Rev. E | Page 3 of 32  
 
 
AD8137  
Data Sheet  
Parameter  
Conditions  
Min  
Typ  
0.3  
Max  
1.1  
Unit  
µA  
Input Bias Current  
AD8137W only: TMIN-TMAX  
ΔVO, dm/ΔVOCM, ΔVOCM = 0.5 V  
AD8137W only: TMIN-TMAX  
1.1  
µA  
dB  
dB  
CMRR  
62  
62  
75  
Power Supply  
Operating Range  
+2.7  
+2.7  
6
6
V
V
AD8137W only: TMIN-TMAX  
Quiescent Current  
Quiescent Current, Disabled  
PSRR  
3.2  
750  
91  
3.60  
3.65  
900  
900  
mA  
mA  
µA  
µA  
dB  
dB  
AD8137W only: TMIN-TMAX  
Power-down = low  
AD8137W only: TMIN-TMAX  
ΔVS = 1 V  
79  
79  
AD8137W only: TMIN-TMAX  
PD Pin  
Threshold Voltage  
VS− + 0.7  
VS− + 0.7  
VS− + 1.7  
VS− + 1.7  
170/240  
180/245  
+125  
V
V
µA  
µA  
°C  
AD8137W only: TMIN-TMAX  
Power-down = high/low  
AD8137W only: TMIN-TMAX  
Input Current  
150/210  
OPERATING TEMPERATURE RANGE  
−40  
Rev. E | Page 4 of 32  
Data Sheet  
AD8137  
VS = 5 V, V OCM = 2.5 V (@ 25°C, differential gain = 1, RL, dm = RF = RG = 1 kΩ, unless otherwise noted, TMIN to TMAX = −40°C to +125°C).  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL INPUT PERFORMANCE  
Dynamic Performance  
−3 dB Small Signal Bandwidth  
VO, dm = 0.1 V p-p  
AD8137W only: TMIN-TMAX  
VO, dm = 2 V p-p  
AD8137W only: TMIN-TMAX  
VO, dm = 2 V step  
VO, dm = 3.5 V step  
63  
61  
76  
76  
75  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
−3 dB Large Signal Bandwidth  
107  
Slew Rate  
375  
110  
90  
Settling Time to 0.02%  
Overdrive Recovery Time  
Noise/Harmonic Performance  
SFDR  
G = 2, VI, dm = 7 V p-p triangle wave  
ns  
VO, dm = 2 V p-p, fC = 500 kHz  
VO, dm = 2 V p-p, fC = 2 MHz  
f = 50 kHz to 1 MHz  
89  
73  
8.25  
1
dB  
dB  
nV/√Hz  
pA/√Hz  
Input Voltage Noise  
Input Current Noise  
DC Performance  
f = 50 kHz to 1 MHz  
Input Offset Voltage  
VIP = VIN = VOCM = 0 V  
AD8137W only: TMIN-TMAX  
TMIN to TMAX  
−2.7  
−5.0  
0.7  
+2.7  
+5.0  
mV  
mV  
µV/°C  
µA  
µA  
µA  
Input Offset Voltage Drift  
Input Bias Current  
Input Offset Current  
3
TMIN to TMAX  
0.5  
0.1  
0.9  
0.45  
0.45  
AD8137W only: TMIN-TMAX  
Open-Loop Gain  
89  
dB  
Input Characteristics  
Input Common-Mode Voltage Range  
1
1
4
4
V
V
AD8137W only: TMIN-TMAX  
Differential  
Common-mode  
Common-mode  
ΔVICM = 1 V  
Input Resistance  
800  
400  
1.8  
90  
kΩ  
kΩ  
pF  
dB  
dB  
Input Capacitance  
CMRR  
64  
64  
AD8137W only: TMIN-TMAX  
Output Characteristics  
Output Voltage Swing  
Each single-ended output, RL, dm = 1 kΩ  
AD8137W only: TMIN-TMAX  
VS− + 0.45  
VS− + 0.45  
VS+ − 0.45  
VS+ − 0.45  
V
V
Output Current  
Output Balance Error  
VOCM to VO, cm PERFORMANCE  
VOCM Dynamic Performance  
−3 dB Bandwidth  
Slew Rate  
20  
−64  
mA  
dB  
f = 1 MHz  
VO, cm = 0.1 V p-p  
VO, cm = 0.5 V p-p  
60  
61  
1.000  
MHz  
V/µs  
V/V  
Gain  
0.980  
0.975  
1.020  
1.020  
AD8137W only: TMIN-TMAX  
AD8137W only: TMIN-TMAX  
AD8137W only: TMIN-TMAX  
V/V  
VOCM Input Characteristics  
Input Voltage Range  
1
1
4
4
V
V
kΩ  
mV  
mV  
Input Resistance  
Input Offset Voltage  
35  
7.5  
−25  
−25  
+25  
+25  
Rev. E | Page 5 of 32  
AD8137  
Data Sheet  
Parameter  
Conditions  
Min  
Typ  
18  
0.25  
Max  
Unit  
nV/√Hz  
µA  
µA  
dB  
Input Voltage Noise  
Input Bias Current  
f = 100 kHz to 5 MHz  
0.9  
0.9  
AD8137W only: TMIN-TMAX  
ΔVO, dm /ΔVOCM, ΔVOCM = 0.5 V  
AD8137W only: TMIN-TMAX  
CMRR  
62  
62  
75  
dB  
Power Supply  
Operating Range  
+2.7  
+2.7  
6
6
V
V
AD8137W only: TMIN-TMAX  
Quiescent Current  
Quiescent Current, Disabled  
PSRR  
2.6  
450  
91  
2.8  
2.8  
600  
600  
mA  
mA  
µA  
µA  
dB  
dB  
AD8137W only: TMIN-TMAX  
Power-down = low  
AD8137W only: TMIN-TMAX  
ΔVS = 1 V  
79  
79  
AD8137W only: TMIN-TMAX  
PD Pin  
Threshold Voltage  
VS− + 0.7  
VS− + 0.7  
VS− + 1.5  
VS− + 1.5  
60/120  
60/125  
+125  
V
V
µA  
µA  
°C  
AD8137W only: TMIN-TMAX  
Power-down = high/low  
AD8137W only: TMIN-TMAX  
Input Current  
50/110  
OPERATING TEMPERATURE RANGE  
−40  
Rev. E | Page 6 of 32  
Data Sheet  
AD8137  
VS = 3 V, V OCM = 1.5 V (@ 25°C, differential gain = 1, RL, dm = RF = RG = 1 kΩ, unless otherwise noted, TMIN to TMAX = −40°C to +125°C).  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL INPUT PERFORMANCE  
Dynamic Performance  
−3 dB Small Signal Bandwidth  
VO, dm = 0.1 V p-p  
AD8137W only: TMIN-TMAX  
VO, dm = 2 V p-p  
AD8137W only: TMIN-TMAX  
VO, dm = 2 V step  
VO, dm = 3.5 V step  
61  
58  
62  
62  
73  
93  
MHz  
MHz  
MHz  
MHz  
V/µs  
Ns  
−3 dB Large Signal Bandwidth  
Slew Rate  
340  
110  
100  
Settling Time to 0.02%  
Overdrive Recovery Time  
Noise/Harmonic Performance  
SFDR  
G = 2, VI, dm = 5 V p-p triangle wave  
Ns  
VO, dm = 2 V p-p, fC = 500 kHz  
VO, dm = 2 V p-p, fC = 2 MHz  
f = 50 kHz to 1 MHz  
89  
71  
8.25  
1
dB  
dB  
nV/√Hz  
pA/√Hz  
Input Voltage Noise  
Input Current Noise  
DC Performance  
f = 50 kHz to 1 MHz  
Input Offset Voltage  
VIP = VIN = VOCM = 0 V  
AD8137W only: TMIN-TMAX  
TMIN to TMAX  
−2.75  
−5.25  
0.7  
+2.75  
+5.25  
mV  
mV  
µV/°C  
µA  
µA  
µA  
Input Offset Voltage Drift  
Input Bias Current  
Input Offset Current  
3
TMIN to TMAX  
0.5  
0.1  
0.9  
0.4  
0.4  
AD8137W only: TMIN-TMAX  
Open-Loop Gain  
87  
dB  
Input Characteristics  
Input Common-Mode Voltage Range  
1
1
2
2
V
V
AD8137W only: TMIN-TMAX  
Differential  
Common-mode  
Common-mode  
ΔVICM = 1 V  
Input Resistance  
800  
400  
1.8  
80  
kΩ  
kΩ  
pF  
dB  
dB  
Input Capacitance  
CMRR  
64  
64  
AD8137W only: TMIN-TMAX  
Output Characteristics  
Output Voltage Swing  
Each single-ended output, RL, dm = 1 kΩ  
AD8137W only: TMIN-TMAX  
VS− + 0.37  
VS− + 0.37  
VS+ − 0.37  
VS+ − 0.37  
V
V
Output Current  
Output Balance Error  
VOCM to VO, cm PERFORMANCE  
VOCM Dynamic Performance  
−3 dB Bandwidth  
Slew Rate  
20  
−64  
mA  
dB  
f = 1 MHz  
VO, cm = 0.1 V p-p  
VO, cm = 0.5 V p-p  
61  
59  
1.00  
MHz  
V/µs  
V/V  
Gain  
0.960  
0.955  
1.040  
1.040  
AD8137W only: TMIN-TMAX  
AD8137W only: TMIN-TMAX  
V/V  
VOCM Input Characteristics  
Input Voltage Range  
1.0  
1.0  
2.0  
2.0  
V
V
Input Resistance  
35  
kΩ  
Input Offset Voltage  
−25  
−25  
5.5  
+25  
+25  
mV  
mV  
nV/√Hz  
µA  
AD8137W only: TMIN-TMAX  
f = 100 kHz to 5 MHz  
Input Voltage Noise  
Input Bias Current  
18  
0.3  
0.7  
0.7  
AD8137W only: TMIN-TMAX  
µA  
Rev. E | Page 7 of 32  
 
AD8137  
Data Sheet  
Parameter  
Conditions  
Min  
62  
62  
Typ  
Max  
Unit  
dB  
dB  
CMRR  
ΔVO, dm /ΔVOCM, ΔVOCM = 0.5 V  
AD8137W only: TMIN-TMAX  
74  
Power Supply  
Operating Range  
+2.7  
+2.7  
6
6
V
V
AD8137W only: TMIN-TMAX  
Quiescent Current  
Quiescent Current, Disabled  
PSRR  
2.3  
345  
90  
2.5  
2.5  
460  
460  
mA  
mA  
µA  
µA  
dB  
dB  
AD8137W only: TMIN-TMAX  
Power-down = low  
AD8137W only: TMIN-TMAX  
ΔVS = 1 V  
78  
78  
AD8137W only: TMIN-TMAX  
PD Pin  
Threshold Voltage  
VS− + 0.7  
VS− + 0.7  
VS− + 1.5  
VS− + 1.5  
10/70  
V
V
µA  
µA  
°C  
AD8137W only: TMIN-TMAX  
Power-down = high/low  
AD8137W only: TMIN-TMAX  
Input Current  
8/65  
10/75  
OPERATING TEMPERATURE RANGE  
−40  
+125  
Rev. E | Page 8 of 32  
Data Sheet  
AD8137  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). The load current consists of differential  
and common-mode currents flowing to the load, as well as  
currents flowing through the external feedback networks and  
the internal common-mode feedback loop. The internal resistor  
tap used in the common-mode feedback loop places a 1 kΩ  
differential load on the output. RMS output voltages should be  
considered when dealing with ac signals.  
Parameter  
Rating  
Supply Voltage  
VOCM  
Power Dissipation  
Input Common-Mode Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
12 V  
VS+ to VS−  
See Figure 3  
VS+ to VS−  
−65°C to +125°C  
−40°C to +125°C  
300°C  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Airflow reduces θJA. In addition, more metal directly in contact  
with the package leads from metal traces, through holes, ground,  
and power planes reduces the θJA.  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 8-lead SOIC  
(125°C/W) and 8-lead LFCSP (θJA = 70°C/W) on a JEDEC  
standard 4-layer board. θJA values are approximations.  
THERMAL RESISTANCE  
3.0  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for the device soldered in a circuit board in still air.  
2.5  
LFCSP  
Table 5. Thermal Resistance  
2.0  
Package Type  
θJA  
157  
125  
70  
θJC  
56  
56  
56  
Unit  
°C/W  
°C/W  
°C/W  
8-Lead SOIC/2-Layer  
8-Lead SOIC/4-Layer  
8-Lead LFCSP/4-Layer  
1.5  
1.0  
SOIC-8  
0.5  
0
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the AD8137 package  
is limited by the associated rise in junction temperature (TJ) on  
the die. At approximately 150°C, which is the glass transition  
temperature, the plastic changes its properties. Even temporarily  
exceeding this temperature limit may change the stresses that  
the package exerts on the die, permanently shifting the parametric  
performance of the AD8137. Exceeding a junction temperature  
of 175°C for an extended period can result in changes in the  
silicon devices, potentially causing failure.  
–40302010  
0
10 20 30 40 50 60 70 80 90 100 110120  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs.  
Ambient Temperature for a 4-Layer Board  
ESD CAUTION  
Rev. E | Page 9 of 32  
 
 
 
 
 
AD8137  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8137  
–IN  
1
2
8
7
6
5
+IN  
PD  
V
OCM  
V
V
3
4
S–  
S+  
+OUT  
–OUT  
Figure 4. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
−IN  
VOCM  
Inverting Input.  
An internal feedback loop drives the output common-mode voltage to be equal to the voltage applied to  
the VOCM pin, provided the operation of the amplifier remains linear.  
3
4
5
6
7
8
VS+  
Positive Power Supply Voltage.  
+OUT  
−OUT  
VS−  
Positive Side of the Differential Output.  
Negative Side of the Differential Output.  
Negative Power Supply Voltage.  
PD  
Power Down.  
+IN  
Noninverting Input.  
EPAD  
Exposed paddle may be connected to either ground plane or power plane.  
Rev. E | Page 10 of 32  
 
Data Sheet  
AD8137  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, differential gain = 1, RG = RF = RL, dm = 1 kΩ, VS = 5 V, T A = 25°C, VOCM = 2.5V. Refer to the basic test circuit in  
Figure 60 for the definition of terms.  
3
2
3
2
G = 1  
G = 1  
1
0
1
0
–1  
–1  
G = 2  
G = 5  
G = 2  
–2  
–3  
–2  
–3  
G = 5  
–4  
–5  
–6  
–7  
–8  
–9  
–4  
–5  
–6  
–7  
–8  
–9  
G = 10  
G = 10  
–10  
–11  
–12  
–10  
–11  
–12  
R
V
= 1kΩ  
O, dm  
G
R = 1kΩ  
G
O, dm  
= 0.1V p-p  
V
= 2.0V p-p  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 8. Large Signal Frequency Response for Various Gains  
Figure 5. Small Signal Frequency Response for Various Gains  
3
4
V
= +3  
V
= +3  
V
= +5  
S
2
3
2
1
0
S
S
V
= +5  
S
1
0
V
= ±5  
–1  
S
V
= ±5  
–2  
–3  
–1  
–2  
–3  
–4  
–5  
S
–4  
–5  
–6  
–7  
–8  
–9  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
–10  
–11  
V
= 0.1V p-p  
V
= 2.0V p-p  
O, dm  
O, dm  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response for Various Power Supplies  
Figure 9. Large Signal Frequency Response for Various Power Supplies  
3
2
1
0
4
T = +25°C  
3
2
1
–1  
0
T = +85°C  
–2  
–1  
T = +85°C  
–3  
–2  
T = +25°C  
–4  
–3  
–4  
T = +125°C  
–5  
T = +125°C  
T = –40°C  
–6  
–7  
–5  
–6  
–7  
–8  
–9  
–8  
–9  
T = –40°C  
–10  
–11  
–12  
–10  
–11  
V
= 0.1V p-p  
V
= 2.0V p-p  
O, dm  
O, dm  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Small Signal Frequency Response at Various Temperatures  
Figure 10. Large Signal Frequency Response at Various Temperatures  
Rev. E | Page 11 of 32  
 
AD8137  
Data Sheet  
3
2
1
3
2
1
R
= 500  
R
= 1kΩ  
L, dm  
L, dm  
R
0
–1  
–2  
–3  
0
–1  
–2  
–3  
= 2kΩ  
L, dm  
–4  
–4  
–5  
–6  
–5  
–6  
–7  
–8  
–7  
–8  
R
= 2kΩ  
L, dm  
R
= 500Ω  
–9  
–9  
L, dm  
–10  
–11  
–10  
R
= 1kΩ  
L, dm  
–11  
–12  
V
= 2V p-p  
V
= 0.1V p-p  
O, dm  
O, dm  
–12  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Small Signal Frequency Response for Various Loads  
Figure 14. Large Signal Frequency Response for Various Loads  
3
2
3
C
= 0pF  
2
F
C
= 0pF  
C
F
1
0
1
0
C
= 1pF  
F
= 1pF  
F
–1  
–1  
–2  
–3  
–2  
–3  
C
= 2pF  
C = 2pF  
F
F
–4  
–5  
–6  
–7  
–8  
–9  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
–10  
–11  
–12  
V
= 0.1V p-p  
V
= 2.0V p-p  
O, dm  
O, dm  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Small Signal Frequency Response for Various CF  
Figure 15. Large Signal Frequency Response for Various CF  
2
3
2
1
V
= 4V  
OCM  
V
= 2.5V  
OCM  
1
0
–1  
–2  
–3  
–4  
0
V
= 1V  
OCM  
–1  
0.5V p-p  
–2  
–3  
–4  
–5  
–6  
–7  
–5  
–6  
–8  
–9  
–7  
2V p-p  
–8  
–10  
–11  
–9  
1V p-p  
0.1V p-p  
–10  
–12  
–13  
–11  
–12  
V
= 0.1V p-p  
O, dm  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Small Signal Frequency Response at Various VOCM  
Figure 16. Frequency Response for Various Output Amplitudes  
Rev. E | Page 12 of 32  
Data Sheet  
AD8137  
4
3
4
3
2
1
2
1
0
–1  
–2  
–3  
0
–1  
–2  
–3  
R
= 500Ω  
F
R
= 2kΩ  
F
R
= 2kΩ  
R
= 500Ω  
F
F
–4  
–5  
–6  
R
= 1kΩ  
–4  
–5  
–6  
F
R
= 1kΩ  
F
–7  
–8  
–7  
–8  
–9  
G = 1  
–9  
V
V
= ±5V  
O, dm  
G = 1  
S
–10  
–11  
–10  
–11  
= 0.1V p-p  
V
= 2V p-p  
O, dm  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. Small Signal Frequency Response for Various RF  
Figure 20. Large Signal Frequency Response for Various RF  
–65  
–40  
G = 1  
G = 1  
V
= 2V p-p  
V
= 2V p-p  
O, dm  
O, dm  
–70  
–75  
–80  
–85  
–90  
–95  
–50  
–60  
–70  
–80  
V
= +3V  
S
V
= +3V  
S
V
= +5V  
S
V
= +5V  
S
V
S
= ±5V  
V
= ±5V  
–90  
–100  
–110  
S
–100  
–105  
0.1  
1
10  
0.1  
1
FREQUENCY (MHz)  
10  
FREQUENCY (MHz)  
Figure 21. Third Harmonic Distortion vs. Frequency and Supply Voltage  
Figure 18. Second Harmonic Distortion vs. Frequency and Supply Voltage  
–50  
–55  
–50  
F
= 500kHz  
C
–55  
–60  
–65  
SECOND HARMONIC SOLID LINE  
THIRD HARMONIC DASHED LINE  
V
= +3V  
S
–60  
–65  
V
= +5V  
S
V
= +5V  
S
–70  
–75  
–70  
–75  
V
= +3V  
S
–80  
–85  
–80  
–85  
V
= +3V  
S
V
= +5V  
S
V
= +3V  
S
V
= +5V  
S
–90  
–95  
–90  
–95  
F
= 2MHz  
C
SECOND HARMONIC SOLID LINE  
THIRD HARMONIC DASHED LINE  
–100  
–100  
0.25 1.25 2.25 3.25 4.25 5.25 6.25 7.25 8.25 9.25  
(V p-p)  
0.25 1.25 2.25 3.25 4.25 5.25 6.25 7.25 8.25 9.25  
(V p-p)  
V
V
O, dm  
O, dm  
Figure 22. Harmonic Distortion vs. Output Amplitude and Supply, FC = 2 MHz  
Figure 19. Harmonic Distortion vs. Output Amplitude and Supply,  
C = 500 kHz  
F
Rev. E | Page 13 of 32  
 
AD8137  
Data Sheet  
–40  
–40  
V
= 2V p-p  
V
= 2V p-p  
O, dm  
O, dm  
–50  
–60  
–70  
–80  
–90  
–50  
–60  
–70  
–80  
–90  
R = 200Ω  
L, dm  
R
= 200Ω  
= 500Ω  
L, dm  
R
= 1kΩ  
L, dm  
R
= 1kΩ  
L, dm  
R
L, dm  
R
= 500Ω  
–100  
–110  
–100  
–110  
L, dm  
0.1  
1
FREQUENCY (MHz)  
10  
10  
10  
0.1  
1
10  
FREQUENCY (MHz)  
Figure 23. Second Harmonic Distortion at Various Loads  
Figure 26. Third Harmonic Distortion at Various Loads  
–40  
–40  
V
R
= 2V p-p  
V
= 2V p-p  
O, dm  
= 1kΩ  
O, dm  
R = 1kΩ  
G
G
–50  
–60  
–70  
–80  
–90  
–50  
–60  
–70  
–80  
–90  
G = 2  
G = 5  
G = 5  
G = 2  
G = 1  
G = 1  
–100  
–110  
–100  
–110  
0.1  
1
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 24. Second Harmonic Distortion at Various Gains  
Figure 27. Third Harmonic Distortion at Various Gains  
–40  
–40  
V
= 2V p-p  
V
= 2V p-p  
O, dm  
G = 1  
O, dm  
G = 1  
–50  
–60  
–70  
–80  
–90  
–50  
–60  
–70  
–80  
–90  
R
= 500Ω  
F
R
= 2kΩ  
F
R
= 1kΩ  
F
R
= 500Ω  
F
–100  
–110  
–100  
–110  
R
= 2kΩ  
F
R
= 1kΩ  
F
0.1  
1
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 25. Second Harmonic Distortion at Various RF  
Figure 28. Third Harmonic Distortion at Various RF  
Rev. E | Page 14 of 32  
Data Sheet  
AD8137  
–50  
–60  
–70  
–80  
–90  
–50  
F
= 500kHz  
F
V
= 500kHz  
C
C
V
= 2V p-p  
= 2V p-p  
O, dm  
O, dm  
SECOND HARMONIC SOLID LINE  
THIRD HARMONIC DASHED LINE  
SECOND HARMONIC SOLID LINE  
THIRD HARMONIC DASHED LINE  
–60  
–70  
–80  
–90  
–100  
–110  
–100  
–110  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
(V)  
V
(V)  
OCM  
OCM  
Figure 29. Harmonic Distortion vs. VOCM, VS = 5 V  
Figure 32. Harmonic Distortion vs. VOCM, VS = 3 V  
100  
1000  
100  
10  
10  
1
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. VOCM Voltage Noise vs. Frequency  
Figure 30. Input Voltage Noise vs. Frequency  
–10  
–20  
20  
V
= 0.2V p-p  
V
V
= 0.2V p-p  
O, cm  
IN, cm  
10  
0
INPUT CMRR = V  
V  
CMRR = V  
V  
OCM  
O, cm/  
IN, cm  
OCM  
O, dm/  
–30  
–40  
–10  
–20  
–30  
–50  
–60  
–40  
–50  
–60  
–70  
–80  
–70  
–80  
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
FREQUENCY (MHz)  
Figure 34. VOCM CMRR vs. Frequency  
Figure 31. CMRR vs. Frequency  
Rev. E | Page 15 of 32  
AD8137  
Data Sheet  
2.0  
8
G = 2  
INPUT  
× 2  
V
1.5  
1.0  
O, dm  
C
= 0pF  
6
4
F
V
= 3.5V p-p  
O, dm  
INPUT  
OUTPUT  
0.5  
0
2
0
ERROR = V  
= 110ns  
- INPUT  
O, dm  
–2  
–0.5  
–1.0  
–1.5  
–2.0  
T
SETTLE  
–4  
–6  
–8  
50ns/DIV  
250ns/DIV  
TIME (ns)  
TIME (ns)  
Figure 38. Settling Time (0.02%)  
Figure 35. Overdrive Recovery  
1.5  
100  
75  
50  
25  
0
C
= 0pF  
F
2V p-p  
1V p-p  
1.0  
0.5  
0
C
C
= 1pF  
= 0pF  
F
F
C
= 0pF  
F
C
= 1pF  
F
C
= 1pF  
F
–25  
–50  
–0.5  
–1.0  
–1.5  
–75  
20ns/DIV  
V
= 100mV p-p  
TIME (ns)  
O, dm  
10ns/DIV  
–100  
TIME (ns)  
Figure 36. Small Signal Transient Response for Various Feedback  
Capacitances  
Figure 39. Large Signal Transient Response for Various Feedback  
Capacitances  
100  
75  
1.5  
R
= 111, C = 5pF  
L
S
1.0  
0.5  
50  
R
= 111, C = 5pF  
L
S
25  
0
R
= 60.4, C = 15pF  
L
S
0
R
= 60.4, C = 15pF  
L
S
–25  
–50  
–0.5  
–75  
–1.0  
–1.5  
20ns/DIV  
20ns/DIV  
–100  
TIME (ns)  
TIME (ns)  
Figure 37. Small Signal Transient Response for Various Capacitive Loads  
Figure 40. Large Signal Transient Response for Various Capacitive Loads  
Rev. E | Page 16 of 32  
 
 
Data Sheet  
AD8137  
–5  
1000  
100  
10  
PSRR = V  
V  
S
O, dm/  
–15  
–25  
–35  
–45  
–55  
–65  
–PSRR  
1
0.1  
+PSRR  
–75  
–85  
0.01  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 41. PSRR vs. Frequency  
Figure 44. Single-Ended Output Impedance vs. Frequency  
4.0  
1
0
–1  
–2  
–3  
3.5  
2V p-p  
3.0  
–4  
–5  
1V p-p  
–6  
–7  
2.5  
2.0  
1.5  
V
= ±5  
S
V
= +5  
S
–8  
–9  
–10  
–11  
V
= +3  
100  
S
–12  
–13  
–14  
20ns/DIV  
V
= 0.1V p-p  
O, dm  
1.0  
1
10  
FREQUENCY (MHz)  
1000  
TIME (ns)  
Figure 45. VOCM Large Signal Transient Response  
Figure 42. VOCM Small Signal Frequency Response for Various Supply Voltages  
350  
345  
340  
335  
–300  
700  
600  
500  
–305  
–310  
–315  
–320  
V
S+  
– V  
OP  
400  
300  
V
– V –  
S
ON  
200  
100  
V
= +3V  
0
V
= +5V  
S
S
–100  
–200  
–300  
–400  
–500  
–600  
–700  
V + – V  
S
OP  
330  
V
– V  
S–  
ON  
325  
320  
–325  
–330  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
200  
1k  
RESISTIVE LOAD ()  
10k  
TEMPERATURE (°C)  
Figure 43. Output Saturation Voltage vs. Output Load  
Figure 46. Output Saturation Voltage vs. Temperature  
Rev. E | Page 17 of 32  
AD8137  
Data Sheet  
2.60  
2.55  
2.50  
2.45  
2.40  
0.3  
0.2  
0.1  
0
15  
10  
5
V
OS, cm  
V
OS, dm  
0
–0.1  
5
–0.2  
–0.3  
10  
2.35  
2.30  
–15  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 47. Offset Voltage vs. Temperature  
Figure 50. Supply Current vs. Temperature  
1.2  
70�  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
30  
10  
–10  
–30  
–50  
–70  
–0.2  
–0.4  
0.50  
1.50  
2.50  
(V)  
3.50  
4.50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
OCM  
3.0  
3.5  
4.0  
4.5  
5.0  
V
V
ACM  
Figure 48. Input Bias Current vs. Input Common-Mode Voltage, VACM  
Figure 51. VOCM Bias Current vs. VOCM Input Voltage  
0.40  
0.35  
0.30  
0.25  
3
–0.1  
–0.2  
–0.3  
2
I
BIAS  
1
0
I
OS  
0.20  
–1  
–0.4  
–0.5  
0.15  
0.10  
–2  
–3  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 49. Input Bias and Offset Current vs. Temperature  
Figure 52. VOCM Bias Current vs. Temperature  
Rev. E | Page 18 of 32  
Data Sheet  
AD8137  
5
4
3
2
1
0
1.5  
1.0  
V
= +5V  
S
V
= ±2.5V  
S
G = 1 (R = R = 1k)  
R
INPUT = 1Vp-p @ 1MHz  
F
G
= 1kΩ  
L, dm  
V
O, dm  
0.5  
0
V
= +3V  
S
–1  
–2  
–0.5  
–1.0  
–1.5  
V
= ±5V  
S
–3  
–0.5V  
PD  
–4  
–5  
2µs/DIV  
–2.0V  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
TIME (µs)  
OCM  
Figure 53. VO, cm vs. VOCM Input Voltage  
Figure 56. Power-Down Transient Response  
40�  
3.6  
3.2  
2.8  
20  
0
PD (0.8V TO 1.5V)  
2.4  
2.0  
1.6  
–20  
–40  
–60  
–80  
1.2  
0.8  
–100  
–120  
0.4  
0
100ns/DIV  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
PD VOLTAGE (V)  
TIME (ns)  
Figure 57. Power-Down Turn-On Time  
PD  
PD  
Voltage  
Figure 54.  
Current vs.  
3.4  
3
2
PD (1.5V TO 0.8V)  
I +  
3.0  
2.6  
2.2  
1.8  
1.4  
S
1
0
–1  
1.0  
–2  
–3  
I –  
0.6  
0.2  
S
40ns/DIV  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TIME (ns)  
PD VOLTAGE (V)  
Figure 58. Power-Down Turn-Off Time  
PD  
Figure 55. Supply Current vs.  
Voltage  
Rev. E | Page 19 of 32  
AD8137  
Data Sheet  
25  
V
V
= ±5V  
S
= 0V  
OCM  
G = +1  
20  
15  
10  
5
0
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
POWER-DOWN VOLTAGE (V)  
Figure 59. Supply Current vs. Power-Down Voltage  
Rev. E | Page 20 of 32  
 
Data Sheet  
AD8137  
TEST CIRCUITS  
R
C
F
50  
50Ω  
F
R
R
= 1kΩ  
G
52.3Ω  
+
V
R
1kΩ  
V
O, dm  
V
MIDSUPPLY  
TEST  
AD8137  
L, dm  
OCM  
52.3Ω  
+
= 1kΩ  
G
C
F
TEST  
SIGNAL  
SOURCE  
R
F
Figure 60. Basic Test Circuit  
R
= 1kΩ  
F
50Ω  
R
R
R
= 1kΩ  
S
G
52.3Ω  
+
V
C
R
V
V
MIDSUPPLY  
52.3Ω  
TEST  
AD8137  
L, dm  
L, dm  
O, dm  
OCM  
+
50Ω  
R
= 1kΩ  
S
G
TEST  
SIGNAL  
SOURCE  
R
= 1kΩ  
F
Figure 61. Capacitive Load Test Circuit, G = 1  
Rev. E | Page 21 of 32  
 
 
AD8137  
Data Sheet  
THEORY OF OPERATION  
100  
The AD8137 is a low power, low cost, fully differential voltage  
feedback amplifier that features a rail-to-rail output stage,  
common-mode circuitry with an internally derived common-  
mode reference voltage, and bias shutdown circuitry. The amplifier  
uses two feedback loops to separately control differential and  
common-mode feedback. The differential gain is set with external  
resistors as in a traditional amplifier, and the output common-  
mode voltage is set by an internal feedback loop, controlled by  
an external VOCM input. This architecture makes it easy to set  
arbitrarily the output common-mode voltage level without  
affecting the differential gain of the amplifier.  
80  
60  
40  
20  
OPEN-LOOP GAIN (dB)  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
PHASE (DEGREES)  
–180  
–200  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
V
OCM  
Figure 63. Open-Loop Gain and Phase  
A
CM  
In Figure 62, the common-mode feedback amplifier ACM  
samples the output common-mode voltage, and by negative  
feedback forces the output common-mode voltage to be equal  
to the voltage applied to the VOCM input. In other words, the  
feedback loop servos the output common-mode voltage to the  
voltage applied to the VOCM input. An internal bias generator  
sets the VOCM level to approximately midsupply; therefore, the  
output common-mode voltage is set to approximately midsupply  
when the VOCM input is left floating. The source resistance of the  
internal bias generator is large and can be overridden easily by an  
external voltage supplied by a source with a relatively small output  
resistance. The VOCM input can be driven to within approximately  
1 V of the supply rails while maintaining linear operation in the  
common-mode feedback loop.  
–OUT  
CP +IN  
–IN CN  
+OUT  
C
C
C
C
Figure 62. Block Diagram  
From Figure 62, the input transconductance stage is an H-bridge  
whose output current is mirrored to high impedance nodes CP  
and CN. The output section is traditional H-bridge driven circuitry  
with common emitter devices driving nodes +OUT and −OUT.  
The 3 dB point of the amplifier is defined as  
g m  
BW =  
The common-mode feedback loop inside the AD8137 produces  
outputs that are highly balanced over a wide frequency range  
without the requirement of tightly matched external components,  
because it forces the signal component of the output common-  
mode voltage to be zeroed. The result is nearly perfectly balanced  
differential outputs of identical amplitude and exactly 180°  
apart in phase.  
2π×CC  
where:  
gm is the transconductance of the input stage.  
CC is the total capacitance on node CP/CN (capacitances CP  
and CN are well matched).  
For the AD8137, the input stage gm is ~1 mA/V and the  
capacitance CC is 3.5 pF, setting the crossover frequency of the  
amplifier at 41 MHz. This frequency generally establishes an  
amplifiers unity gain bandwidth, but with the AD8137, the  
closed-loop bandwidth depends upon the feedback resistor  
value as well (see Figure 17). The open-loop gain and phase  
simulations are shown in Figure 63.  
Rev. E | Page 22 of 32  
 
 
Data Sheet  
AD8137  
APPLICATIONS INFORMATION  
Output balance is measured by placing a well-matched resistor  
divider across the differential voltage outputs and comparing  
the signal at the dividers midpoint with the magnitude of the  
differential output. By this definition, output balance is equal to  
the magnitude of the change in output common-mode voltage  
divided by the magnitude of the change in output differential  
mode voltage:  
ANALYZING A TYPICAL APPLICATION WITH  
MATCHED RF AND RG NETWORKS  
Typical Connection and Definition of Terms  
Figure 64 shows a typical connection for the AD8137, using  
matched external RF/RG networks. The differential input  
terminals of the AD8137, VAP and VAN, are used as summing  
junctions. An external reference voltage applied to the VOCM  
terminal sets the output common-mode voltage. The two  
output terminals, VOP and VON, move in opposite directions  
in a balanced fashion in response to an input signal.  
VO, cm  
VO, dm  
Output Balance =  
(3)  
The differential negative feedback drives the voltages at the summing  
junctions VAN and VAP to be essentially equal to each other.  
C
F
V
AN = VAP  
(4)  
R
F
R
R
V
V
V
G
AP  
ON  
The common-mode feedback loop drives the output common-  
mode voltage, sampled at the midpoint of the two internal  
common-mode tap resistors in Figure 62, to equal the voltage  
set at the VOCM terminal. This ensures that  
V
IP  
+
V
OCM  
R
V
L, dm  
AD8137  
O, dm  
G
V
AN  
OP  
V
IN  
+
R
F
F
VO, dm  
VOP =VOCM  
+
(5)  
2
C
and  
Figure 64. Typical Connection  
VO, dm  
2
The differential output voltage is defined as  
O, dm = VOP − VON  
VON =VOCM  
(6)  
V
(1)  
(2)  
ESTIMATING NOISE, GAIN, AND BANDWITH WITH  
MATCHED FEEDBACK NETWORKS  
Estimating Output Noise Voltage and Bandwidth  
Common-mode voltage is the average of two voltages. The  
output common-mode voltage is defined as  
VOP + VON  
VO, cm  
=
The total output noise is the root-sum-squared total of several  
statistically independent sources. Because the sources are  
statistically independent, the contributions of each must be  
individually included in the root-sum-square calculation. Table 7  
lists recommended resistor values and estimates of bandwidth  
and output differential voltage noise for various closed-loop  
gains. For most applications, 1% resistors are sufficient.  
2
Output Balance  
Output balance is a measure of how well VOP and VON are  
matched in amplitude and how precisely they are 180° out of  
phase with each other. It is the internal common-mode feedback  
loop that forces the signal component of the output common-  
mode toward zero, resulting in the near perfectly balanced  
differential outputs of identical amplitude and are exactly 180°  
out of phase. The output balance performance does not require  
tightly matched external components, nor does it require that  
the feedback factors of each loop be equal to each other. Low  
frequency output balance is ultimately limited by the mismatch  
of an on-chip voltage divider.  
Table 7. Recommended Values of Gain-Setting Resistors and  
Voltage Gain for Various Closed-Loop Gains  
3 dB Bandwidth  
Gain RG (Ω) RF (Ω) (MHz)  
Total Output  
Noise (nV/√Hz)  
1
2
5
10  
1 k  
1 k  
1 k  
1 k  
1 k  
2 k  
5 k  
10 k  
72  
40  
12  
6
18.6  
28.9  
60.1  
112.0  
Rev. E | Page 23 of 32  
 
 
 
 
 
AD8137  
Data Sheet  
Feedback Factor Notation  
The differential output voltage noise contains contributions  
from the AD8137s input voltage noise and input current noise  
as well as those from the external feedback networks.  
When working with differential drivers, it is convenient to  
introduce the feedback factor β, which is defined as  
RG  
β ≡  
The contribution from the input voltage noise spectral density  
is computed as  
(14)  
RF + RG  
RF  
RG  
This notation is consistent with conventional feedback analysis  
and is very useful, particularly when the two feedback loops are  
not matched.  
Vo_n1 = v 1+  
, or equivalently, vn/β  
(7)  
n   
where vn is defined as the input-referred differential voltage  
noise. This equation is the same as that of traditional op amps.  
Input Common-Mode Voltage  
The linear range of the VAN and VAP terminals extends to within  
approximately 1 V of either supply rail. Because VAN and VAP are  
essentially equal to each other, they are both equal to the amplifiers  
input common-mode voltage. Their range is indicated in the  
specifications tables as input common-mode range. The voltage  
at VAN and VAP for the connection diagram in Figure 64 can be  
expressed as  
The contribution from the input current noise of each input is  
computed as  
Vo_n2 = in  
(
RF  
)
(8)  
where in is defined as the input noise current of one input. Each  
input needs to be treated separately because the two input currents  
are statistically independent processes.  
VAN = VAP = VACM =  
The contribution from each RG is computed as  
(
VIP +VIN  
)
RG  
RF + RG  
RF  
RF + RG  
R
RG  
×
+
×VOCM  
(15)  
F
Vo_n3 = 4kTR  
(9)  
G   
2
where VACM is the common-mode voltage present at the amplifier  
input terminals.  
This result can be intuitively viewed as the thermal noise of  
each RG multiplied by the magnitude of the differential gain.  
Using the β notation, Equation (15) can be written as  
The contribution from each RF is computed as  
Vo_n 4 = 4kTRF  
V
ACM = βVOCM + (1 − β)VICM  
or equivalently,  
ACM = VICM + β(VOCM VICM  
(16)  
(17)  
(10)  
Voltage Gain  
V
)
The behavior of the node voltages of the single-ended-to-  
differential output topology can be deduced from the signal  
definitions and Figure 64. Referring to Figure 64, CF = 0 and  
setting VIN = 0, one can write:  
where VICM is the common-mode voltage of the input signal,  
that is  
VIP + VIN  
VICM  
2
VIP VAP VAP VON  
(11)  
(12)  
=
RG  
RF  
For proper operation, the voltages at VAN and VAP must stay  
within their respective linear ranges.  
OP   
RG  
RF + RG  
VAN = VAP = V  
Calculating Input Impedance  
The input impedance of the circuit in Figure 64 depends on  
whether the amplifier is being driven by a single-ended or a  
differential signal source. For balanced differential input  
signals, the differential input impedance (RIN, dm) is simply  
Solving the previous two equations and setting VIP to Vi gives  
the gain relationship for VO, dm/Vi.  
R
F
V
OP  
V  
= V  
=
V
i
(13)  
ON  
O, dm  
R
G
RIN, dm = 2RG  
(18)  
An inverting configuration with the same gain magnitude can  
be implemented by simply applying the input signal to VIN and  
setting VIP = 0. For a balanced differential input, the gain from  
For a single-ended signal (for example, when VIN is grounded  
and the input signal drives VIP), the input impedance becomes  
R
G
R
R
=
(19)  
IN  
VIN, dm to VO, dm is also equal to RF/RG, where VIN, dm = VIP − VIN.  
F
1−  
2(R + R )  
G
F
Rev. E | Page 24 of 32  
Data Sheet  
AD8137  
5V  
0.1µF  
1kΩ  
0.1µF  
1kΩ  
50Ω  
3
1.0nF  
1.0nF  
5
8
2
1
+
VDD  
V
OCM  
V
V
+
IN  
AD8137  
+2.5V  
GND  
–2.5V  
V
IN  
AD7450A  
4
6
V
REFB  
IN  
1kΩ  
1kΩ  
50Ω  
GND  
V
REF  
2.5kΩ  
+1.88V  
V
V
+1.25V  
+0.63V  
ACM WITH  
= 0  
REFB  
ADR525A  
2.5V SHUNT  
REFERENCE  
2.5V  
V
REFA  
Figure 65. AD8137 Driving AD7450A, 12-Bit ADC  
5V  
The input impedance of a conventional inverting op amp  
configuration is simply RG; however, it is higher in Equation 19  
because a fraction of the differential output voltage appears at  
the summing junctions, VAN and VAP. This voltage partially  
bootstraps the voltage across the input resistor RG, leading to  
the increased input resistance.  
0.1µF  
1kΩ  
3
1kΩ  
5
8
+
V
OCM  
2
V
IN  
0V TO 5V  
AD8137  
1
4
Input Common-Mode Swing Considerations  
6
In some single-ended-to-differential applications, when using a  
single-supply voltage, attention must be paid to the swing of the  
1kΩ  
1kΩ  
TO  
5V  
AD7450A  
0.1µF  
10kΩ  
V
REF  
input common-mode voltage, VACM  
.
ADR525A  
2.5V SHUNT  
REFERENCE  
0.1µF  
+
+
AD8031  
Consider the case in Figure 65, where VIN is 5 V p-p swinging  
about a baseline at ground and VREFB is connected to ground.  
The input signal to the AD8137 is originating from a source  
with a very low output resistance.  
10µF  
0.1µF  
The circuit has a differential gain of 1.0 and β = 0.5. VICM has an  
amplitude of 2.5 V p-p and is swinging about ground. Using the  
results in Equation 16, the common-mode voltage at the inputs of  
the AD8137, VACM, is a 1.25 V p-p signal swinging about a baseline  
of 1.25 V. The maximum negative excursion of VACM in this case is  
0.63 V, which exceeds the lower input common-mode voltage limit.  
Figure 66. Low-Z Bias Source  
Another way to avoid the input common-mode swing limitation  
is to use dual power supplies on the AD8137. In this case, the  
biasing circuitry is not required.  
Bandwidth vs. Closed-Loop Gain  
One way to avoid the input common-mode swing limitation is  
to bias VIN and VREF at midsupply. In this case, VIN is 5 V p-p  
swinging about a baseline at 2.5 V, and VREF is connected to a  
low-Z 2.5 V source. VICM now has an amplitude of 2.5 V p-p and  
is swinging about 2.5 V. Using the results in Equation 17, VACM  
is calculated to be equal to VICM because VOCM = VICM. Therefore,  
The 3 dB bandwidth of the AD8137 decreases proportionally  
to increasing closed-loop gain in the same way as a traditional  
voltage feedback operational amplifier. For closed-loop gains  
greater than 4, the bandwidth obtained for a specific gain can  
be estimated as  
RG  
f
3dB ,VO, dm  
=
×(72 MHz)  
(20)  
VICM swings from 1.25 V to 3.75 V, which is well within the input  
RG + RF  
or equivalently, β(72 MHz).  
This estimate assumes a minimum 90° phase margin for the  
common-mode voltage limits of the AD8137. Another benefit  
seen by this example is that because VOCM = VACM = VICM, no  
wasted common-mode current flows. Figure 66 illustrates a way  
to provide the low-Z bias voltage. For situations that do not  
require a precise reference, a simple voltage divider suffices to  
develop the input voltage to the buffer.  
amplifier loop, a condition approached for gains greater than 4.  
Lower gains show more bandwidth than predicted by the equation  
due to the peaking produced by the lower phase margin.  
Rev. E | Page 25 of 32  
 
 
AD8137  
Data Sheet  
Estimating DC Errors  
Driving a Capacitive Load  
Primary differential output offset errors in the AD8137 are due  
to three major components: the input offset voltage, the offset  
between the VAN and VAP input currents interacting with the  
feedback network resistances, and the offset produced by the  
dc voltage difference between the input and output common-  
mode voltages in conjunction with matching errors in the  
feedback network.  
A purely capacitive load reacts with the bondwire and pin  
inductance of the AD8137, resulting in high frequency ringing  
in the transient response and loss of phase margin. One way to  
minimize this effect is to place a small resistor in series with  
each output to buffer the load capacitance. The resistor and load  
capacitance forms a first-order, low-pass filter; therefore, the  
resistor value should be as small as possible. In some cases, the  
ADCs require small series resistors to be added on their inputs.  
The first output error component is calculated as  
Figure 37 and Figure 40 illustrate transient response vs. capacitive  
load and were generated using series resistors in each output  
and a differential capacitive load.  
R + R  
RG  
F
G
Vo_e1 =V  
, or equivalently as VIO/β  
(21)  
(22)  
IO   
where VIO is the input offset voltage.  
Layout Considerations  
The second error is calculated as  
Standard high speed PCB layout practices should be adhered  
to when designing with the AD8137. A solid ground plane is  
recommended and good wideband power supply decoupling  
networks should be placed as close as possible to the supply pins.  
R + R  
RGRF  
RF + RG  
  
  
F
G
Vo_e 2 = I  
= I RF  
( )  
IO  
IO   
RG  
  
where IIO is defined as the offset between the two input bias  
To minimize stray capacitance at the summing nodes, the  
copper in all layers under all traces and pads that connect to  
the summing nodes should be removed. Small amounts of stray  
summing-node capacitance cause peaking in the frequency  
response, and large amounts can cause instability. If some stray  
summing-node capacitance is unavoidable, its effects can be  
compensated for by placing small capacitors across the feedback  
resistors.  
currents.  
The third error voltage is calculated as  
Vo_e3 = Δenr × (VICM VOCM  
)
(23)  
where Δenr is the fractional mismatch between the two feedback  
resistors.  
The total differential offset error is the sum of these three error  
sources.  
Terminating a Single-Ended Input  
Additional Impact of Mismatches in the Feedback Networks  
Controlled impedance interconnections are used in most high  
speed signal applications, and they require at least one line  
termination. In analog applications, a matched resistive termination  
is generally placed at the load end of the line. This section deals  
with how to properly terminate a single-ended input to the AD8137.  
The internal common-mode feedback network still forces the  
output voltages to remain balanced, even when the RF/RG feed-  
back networks are mismatched. The mismatch, however, causes  
a gain error proportional to the feedback network mismatch.  
Ratio-matching errors in the external resistors degrade the  
ability to reject common-mode signals at the VAN and VIN input  
terminals, similar to a four resistor, difference amplifier made  
from a conventional op amp. Ratio-matching errors also produce a  
differential output component that is equal to the VOCM input  
voltage times the difference between the feedback factors (βs).  
In most applications using 1% resistors, this component amounts  
to a differential dc offset at the output that is small enough to  
be ignored.  
The input resistance presented by the AD8137 input circuitry  
is seen in parallel with the termination resistor, and its loading  
effect must be taken into account. The Thevenin equivalent  
circuit of the driver, its source resistance, and the termination  
resistance must all be included in the calculation as well. An  
exact solution to the problem requires solution of several  
simultaneous algebraic equations and is beyond the scope of  
this data sheet. An iterative solution is also possible and is easier,  
especially considering the fact that standard resistor values are  
generally used.  
Rev. E | Page 26 of 32  
Data Sheet  
AD8137  
Figure 67 shows the AD8137 in a unity-gain configuration, and  
with the following discussion, provides a good example of how  
to provide a proper termination in a 50 Ω environment.  
Power-Down  
PD  
The AD8137 features a  
pin that can be used to minimize the  
quiescent current consumed when the device is not being used.  
PD  
+5V  
is asserted by applying a low logic level to Pin 7. The threshold  
between high and low logic levels is nominally 1.1 V above the  
negative supply rail. See Table 1 to Table 3 for the threshold limits.  
0.1µF  
PD  
The AD8137  
pin features an internal pull-up network that  
1kΩ  
PD  
enables the amplifier for normal operation. The AD8137  
pin can be left floating (that is, no external connection is  
3
2V p-p  
50Ω  
1kΩ  
5
8
2
1
+
R
V
T
OCM  
V
IN  
required) and does not require an external pull-up resistor to  
AD8137  
0V  
52.3Ω  
SIGNAL  
SOURCE  
ensure normal on operation (see Figure 68).  
4
6
1.02kΩ  
PD  
Do not connect the  
pin directly to VS+ in 5 V applications.  
+
1kΩ  
This can cause the amplifier to draw excessive supply current  
(see Figure 59) and may induce oscillations and/or stability  
issues.  
0.1µF  
–5V  
Figure 67. AD8137 with Terminated Input  
+V  
S
The 52.3 Ω termination resistor, RT, in parallel with the 1 kΩ  
input resistance of the AD8137 circuit, yields an overall input  
resistance of 50 Ω that is seen by the signal source. To have  
matched feedback loops, each loop must have the same RG if it  
has the same RF. In the input (upper) loop, RG is equal to the 1 kΩ  
resistor in series with the (+) input plus the parallel combination  
of RT and the source resistance of 50 Ω. In the upper loop, RG is  
therefore equal to 1.03 kΩ. The closest standard value is 1.02 kΩ  
and is used for RG in the lower loop.  
+V  
S
50kΩ  
Q1  
Q2  
5kΩ  
PD  
REF A  
150kΩ  
–V  
S
PD  
Figure 68.  
Pin Circuit  
DRIVING AN ADC WITH GREATER THAN 12-BIT  
PERFORMANCE  
Things become more complicated when it comes to determining  
the feedback resistor values. The amplitude of the signal source  
generator VIN is two times the amplitude of its output signal when  
terminated in 50 Ω. Therefore, a 2 V p-p terminated amplitude  
is produced by a 4 V p-p amplitude from VS. The Thevenin  
equivalent circuit of the signal source and RT must be used when  
calculating the closed-loop gain because RG in the upper loop is  
split between the 1 kΩ resistor and the Thevenin resistance  
looking back toward the source. The Thevenin voltage of the  
signal source is greater than the signal source output voltage  
when terminated in 50 Ω because RT must always be greater  
than 50 Ω. In this case, RT is 52.3 Ω and the Thevenin voltage  
and resistance are 2.04 V p-p and 25.6 Ω, respectively.  
Because the AD8137 is suitable for 12-bit systems, it is desirable  
to measure the performance of the amplifier in a system with  
greater than 12-bit linearity. In particular, the effective number  
of bits (ENOB) is most interesting. The AD7687, 16-bit, 250 KSPS  
ADC performance makes it an ideal candidate for showcasing  
the 12-bit performance of the AD8137.  
For this application, the AD8137 is set in a gain of 2 and driven  
single-ended through a 20 kHz band-pass filter, while the output  
is taken differentially to the input of the AD7687 (see Figure 69).  
This circuit has mismatched RG impedances and, therefore, has a  
dc offset at the differential output. It is included as a test circuit to  
illustrate the performance of the AD8137. Actual application  
circuits should have matched feedback networks.  
Now the upper input branch can be viewed as a 2.04 V p-p  
source in series with 1.03 kΩ. Because this is to be a unity-gain  
application, a 2 V p-p differential output is required, and RF  
must therefore be 1.03 kΩ × (2/2.04) = 1.01 kΩ ≈ 1 kΩ.  
For an AD7687 input range up to −1.82 dBFS, the AD8137 power  
supply is a single 5 V applied to VS+ with VS− tied to ground. To  
increase the AD7687 input range to −0.45 dBFS, the AD8137  
supplies are increased to +6 V and −1 V. In both cases, the VOCM  
This example shows that when RF and RG are large compared to RT,  
the gain reduction produced by the increase in RG is essentially  
cancelled by the increase in the Thevenin voltage caused by RT  
being greater than the output resistance of the signal source. In  
general, as RF and RG become smaller in terminated applications,  
RF needs to be increased to compensate for the increase in RG.  
PD  
pin is biased with 2.5 V and the  
pin is left floating. All voltage  
supplies are decoupled with 0.1 µF capacitors. Figure 70 and  
Figure 71 show the performance of the −1.82 dBFS setup and the  
−0.45 dBFS setup, respectively.  
When generating the typical performance characteristics data,  
the measurements were calibrated to take the effects of the  
terminations on closed-loop gain into account.  
Rev. E | Page 27 of 32  
 
 
 
AD8137  
Data Sheet  
V +  
S
1.0k  
20kHz  
V+  
GND  
33Ω  
33Ω  
499Ω  
499Ω  
V
+
IN  
V
DD  
BPF  
V
1nF  
1nF  
OCM  
AD8137  
AD7687  
GND  
1.0kΩ  
+2.5  
V –  
S
Figure 69. AD8137 Driving AD7687, 16-Bit 250 KSPS ADC  
0
0
–10  
–20  
THD = –91.75dBc  
SNR = 91.35dB  
SINAD = 88.75dB  
ENOB = 14.4  
–10  
THD = –93.63dBc  
SNR = 91.10dB  
SINAD = 89.74dB  
ENOB = 14.6  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–110  
–120  
–130  
–140  
–140  
–150  
–160  
–170  
0
–150  
–160  
0
20  
40  
60  
80  
100  
120  
140  
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 71. AD8137 Performance on +6 V, −1 V Supplies, −0.45 dBFS  
Figure 70. AD8137 Performance on Single 5 V Supply, −1.82 dBFS  
Rev. E | Page 28 of 32  
 
Data Sheet  
AD8137  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 72. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
1.84  
1.74  
1.64  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.55  
1.45  
1.35  
AREA  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TOJEDEC STANDARDS MO-229-WEED  
Figure 73. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-13)  
Dimensions shown in millimeters  
Rev. E | Page 29 of 32  
 
AD8137  
Data Sheet  
ORDERING GUIDE  
Model1, 2  
AD8137YR  
AD8137YR-REEL7  
AD8137YRZ  
AD8137YRZ-REEL  
AD8137YRZ-REEL7  
AD8137YCPZ-R2  
AD8137YCPZ-REEL  
AD8137YCPZ-REEL7  
AD8137WYCPZ-R7  
AD8137YCP-EBZ  
AD8137YR-EBZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
Package Option  
Branding  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Lead Frame Chip Scale Package (LFCSP_WD)  
8-Lead Lead Frame Chip Scale Package (LFCSP_WD)  
8-Lead Lead Frame Chip Scale Package (LFCSP_WD)  
8-Lead Lead Frame Chip Scale Package (LFCSP_WD)  
LFCSP Evaluation Board  
R-8  
R-8  
R-8  
R-8  
R-8  
CP-8-13  
CP-8-13  
CP-8-13  
CP-8-13  
HFB#  
HFB#  
HFB#  
H2G  
SOIC Evaluation Board  
1 Z = RoHS Compliant Part; # denotes that RoHS part may be top or bottom marked.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD8137W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. E | Page 30 of 32  
 
 
 
Data Sheet  
NOTES  
AD8137  
Rev. E | Page 31 of 32  
AD8137  
NOTES  
Data Sheet  
©2004–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04771-0-7/12(E)  
Rev. E | Page 32 of 32  

相关型号:

AD8137_05

Low Cost, Low Power 12-Bit Differential ADC Driver
ADI

AD8137_12

Low Cost, Low Power, Differential ADC Driver
AAVID

AD8138

Low Distortion Differential ADC Driver
ADI

AD8138-703L

LINE DRIVER, CDFP10, DFP-10
ADI

AD8138-EVAL

Low Distortion Differential ADC Driver
ADI

AD8138AR

Low Distortion Differential ADC Driver
ADI

AD8138AR-REEL

Low Distortion Differential ADC Driver
ADI

AD8138AR-REEL7

Low Distortion Differential ADC Driver
ADI

AD8138ARM

Low Distortion Differential ADC Driver
ADI

AD8138ARM-REEL

Low Distortion Differential ADC Driver
ADI

AD8138ARM-REEL7

Low Distortion Differential ADC Driver
ADI

AD8138ARMZ

Low Distortion Differential ADC Driver
ADI